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Abstract

The configuration design space and flight regime of new air vehicles is vast. Determination of
nonlinear aeroelastic responses, vehicle trim states and vehicle stability is a challenge that must be
addressed in an efficient, methodical manner. To accomplish this, we are developing a method for
determining and analyzing nonlinear aeroelastic responses using a combination of a continuation
method with a variable-fidelity reduced-order model of the flowfield, a nonlinear description of
structural response, and a trim model of the air vehicle capturing both rigid body and flexible
body motions.

This report summarizes the accomplishments made during this funding cycle of the project.
These results include new techniques developed for reduced-order modeling using the proper orthog-
onal decomposition (POD) method, a novel nonlinear beam model, and high-quality grid generator
for aircraft with very large wing deformation.

To improve the efficiency of the reduced-order model based on POD, we developed several
acceleration techniques. The most effective acceleration methods were database splitting and a new
solver for linear systems with quasi-symmetric matrices. To improve the accuracy and efficiency
of the POD method applied to unsteady flows with shocks, we developed a method for capturing
discontinuities using mathematical morphology and a technique for augmenting the POD basis
functions.

To reduce the computational time for structural modeling and to allow us to use continuation
methods, we developed a novel nonlinear beam model. Though some facets of the method and model
presented herein have been seen before, there are several features worth noting that distinguish this
work. Compared to previous work, this method offers improvement by accounting for a non-uniform
beam with the center of mass of each cross section offset from the elastic axis. This approach
additionally permits rotation of the centroidal axes along the length of the undeformed beam
and uses the Galerkin method to address abrupt lengthwise variations numerically. This model
improves upon prior work by extending the order of the nonlinear terms retained to the third
order. The method developed herein includes the ability to account for the nonlinear contribution
of mass-offset, mass-offset in both dimensions, non-uniformity, principal bending and stiffness axes
that vary mutually and along the length of the beam, abrupt lengthwise property changes, and
the consistent retention of all third-order terms. Compared to finite element results, the method
developed herein is two orders of magnitude faster, while the frequency errors are typically less
than 1% (the maximum error value encountered was 3.4% for the forth mode).

Although the nonlinear beam element presented above excels on both accuracy and efficiency,
not all structures can be modeled by beams. For this reason, and because we prefer to have access to
the source code rather than using canned commercial codes, during this project we also developed
a finite element method for plates. This finite element code was validated against NASA LaRC
generic transport wing experimental data.

To improve the quality of the flow solver mesh generation for aircraft with extreme wing de-
formation (wing tip deformation up to 60% of the wing span) a novel grid generation algorithm
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was developed using conformal mapping. Conformal mapping, an almost extinct research topic
nowadays, has the advantage of generating orthogonal grids, that remain orthogonal even when
the wing deforms. Consequently, the accuracy of the computational fluid dynamics (CFD) results
improves. In addition, the grid remains topologically identical while the wing/fuselage deform,
which simplifies the parallel communication for the flow solver. The results included in this report
show the improved grid quality of the conformal mapping grid compared to a state-of-the-art grid
that uses Poisson smoothing.
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Nomenclature

Roman Letters

A Cross-sectional area
B Cross section-fixed coordinate system
B Constant in Weinig-Manea transformation
C Damping matrix

C−j complex constants of conformal mapping z1(ζ)
c Cosine
eη Offset of Centroidal Axis above Elastic Axis along η-axis
eζ Offset of Centroidal Axis aft of Elastic Axis along ζ-axis
D Stiffness
E Young’s Modulus
F Forcing Vector
G Modulus of Rigidity
j Cross-Sectional Mass Moment of Inertia
K Stiffness Matrix

Torsion Constant
L Length
L Lagrangian
l Cross-Sectional Lagrangian

Number of z-direction Bending Modes
M Mass Matrix
m Cross-Sectional Mass

Number of y-direction Bending Modes
N Inertial Reference Coordinate System
n Number of Torsional Modes
Q Generalized Non-Conservative Sectional Force
q Generalized Direction
R constant in Weinig-Manea transformation
s Position along Elastic Axis of Beam
s Sine
T Cross-Sectional Kinetic Energy
T Kinetic Energy
t Time or pitch
u Displacement in x-direction
V Cross-Sectional Potential Energy
V Potential Energy
v Displacement in y-direction
vi y-direction Displacement Time coefficient for ith Out-of-plane Mode
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NV Inertial Velocity of each Section
W Virtual Work Resulting from Forces
Wb Wnc at Boundaries (s = 0, L)
Wc Virtual Work Resulting from Conservative Forces
Wi Mode Shape for the ith Bending Mode

Wnc Virtual Work Resulting from Non-Conservative Forces
w Displacement in z-direction
wi z-direction Displacement Time coefficient for ith In-Plane Mode
x Inertial axis in lengthwise direction
y Inertial axis along plane of fixed end
z Inertial axis along plane of fixed end or complex variable in airfoil domain
z1 Complex variable in domain of the deformed circle
z2 Complex variable in domain of the deformed ellipse

Greek Letters

δ Variational Operator
ζ Cross section-fixed axis or complex variable in unit circle domain
η Cross Section-Fixed Axis
θ Second Euler Angle Rotation about y1-axis
Λ Sweep Angle
λ Lagrangian Multiplier
ξ Cross Section-Fixed Axis
ρ Mass Density
ρ Curvature Vector
φ Third Euler Angle Rotation about ξ-axis

Torsional Displacement
φi Torsional Displacement Time Coefficient for ith Torsional Mode
ψ First Euler Angle Rotation about z-axis
ω Angular Velocity of the Body Frame, Relative to the Inertial Frame

Primes denote differentiation with respect to s, while over-dots indicate differentiation with respect
to time.
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Chapter 1

Introduction

Studies of nonlinear fluid-structure interactions have been motivated by evidence that there are ad-
verse aeroelastic responses attributed to system nonlinearities. For example, the flexibility of some
new classes of air vehicles leads to large out-of-plane deformations as well as to remarkable in-plane
responses (Strganac et al., 2005). In addition, limit-cycle oscillations (LCOs) occur in nonlinear
aeroelastic systems and remain a persistent problem on fighter aircraft with store configurations.
Such LCOs are unacceptable since aircraft performance, aircraft certification, mission capability,
and human factor issues such as pilot fatigue are adversely affected. As a result, high-fidelity non-
linear aeroelastic solvers for aircraft with large wing deformation are needed for current and future
air vehicles.

The goal of this project was to develop new techniques for predicting nonlinear aeroelastic
responses. To achieve this goal we developed novel methods for: (i) improving the accuracy and
efficiency of reduced-order modeling based on the proper orthogonal decomposition (POD) method,
(ii) modeling nonlinear structural dynamics, and (iii) improving computational mesh quality for
unsteady aerodynamics. This report summarizes these developments.

Chapter 2 presents the improvements of the reduced-order model based on the POD method.
The first section describes a set of acceleration techniques that we developed for the POD method.
The two most efficient acceleration techniques were included herein: database splitting and a solver
for linear systems with quasi-symmetric matrices. The second section presents a new POD method
for solving flows with discontinuities, such as shocks.

Chapter 3 presents a novel nonlinear beam model. The first section describes the derivation of
the nonlinear equations of motion, followed by the modal representation which details the deriva-
tion of the linear and nonlinear mass, stiffness and damping matrices. Section three presents the
numerical implementation of the structural solver, followed by solver validation.

Chapter 4 illustrates the use of the continuation method for aeroelasticity applications. The
use of the continuation method was facilitated by the development of the nonlinear beam modal
representation.

Chapter 5 describes the new grid generator for the flow solver. This chapter includes a section
on the conformal mappings used to generate the mesh and a section on grid quality. The latter
section compares the grid quality of an algebraic mesh that was improved using a Poisson solver
with the quality of the conformal mapping mesh.

9



Chapter 2

Improvements of the Reduced-Order
Model based on Proper Orthogonal
Decomposition

This chapter presents the improvements done to the POD method during this project. The first
section describes two acceleration techniques: (1) database splitting, and (2) a solver for linear
systems with quasi-symmetric matrices. The second section presents a new POD method for
solving flows with discontinuities, such as shocks. This section describes the method developed
for capturing discontinuities using mathematical morphology and a new method that we call the
augmented POD method. In the augmented POD method the POD basis modes were augmented
by discontinuity modes.

2.1 Acceleration Techniques for the Proper Orthogonal Decom-
position Method

Proper orthogonal decomposition (POD) was extensively used in aerodynamics for extracting the
flow features from either experimental or numerically simulated data. The focus of the work
presented herein was to use the POD method to develop a reduced-order model that diminishes
the computational cost of a full-order model. It should be noted that when using POD, the
name reduced-order model is somewhat misleading, because the results produced by POD reduced-
order models are not necessarily lower-fidelity than to those of the full-order models. We have
demonstrated that reduced-order models based on POD produce accurate results (shear stress
errors less than 1%) for highly nonlinear and rather complicated transport phenomena, such as
rotor-stator interaction in turbomachinery (Cizmas and Palacios, 2003) and two-phase flows (Yuan
et al., 2005), if enough modes are kept in the POD approximation.

Existing POD implementations (Lieu and Farhat, 2005) reported that the ROM-based simula-
tion was only four times faster than the full-order model simulation. Lieu and Farhat (2005) also
reported that if the simulation was limited to 0.5 seconds, the aeroelastic ROM was as computa-
tionally intensive as the full-order nonlinear aeroelastic model. In this case, the ROM simulation
was beneficial only if longer time-window simulations. We developed reduced-order models using
POD for viscous (and two-phase) flows and obtained speedups of two orders of magnitude or more,
depending on the imposed accuracy, that is, the number of modes kept in the solution (Cizmas
et al., 2008). It is unclear why there is such a large difference between the speedup values reported
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by the Colorado/Stanford and Texas A&M teams. It could be that the acceleration techniques
reported in (Cizmas et al., 2008) and other practical implementation aspects reported in (Brenner
et al., 2009) are responsible for these differences.

The full-order model of the unsteady flow used for the test case utilized for developing accelera-
tion techniques consisted of the Reynolds-averaged Navier-Stokes equations. This full-order model
was used to produce the POD basis functions. The energy spectrum for a channel flow with pres-
sure variations of approximately 10% of the maximum pressure value is shown in Fig. 2.1. It should
be noted that the amount of energy contained by the first mode is rather large, varying between
48% to 76%. These values are larger than the values obtained for other types of flows, such as
turbomachinery flows or two-phase flows in chemical reactors where the energy content of the first
mode is less than 30%. Consequently, fewer modes are necessary to capture the flow features for
aeroelastic applications, therefore leading to larger speed-up factors.
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Figure 2.1: Cumulative energy spectrum.

Several acceleration methods of the POD method have been explored. The two most efficient
techniques developed during this project are presented herein: (i) an algorithm for splitting the
database, and (ii) an algorithm for solving quasi-symmetrical matrices. In addition to these meth-
ods, we also investigated: (1) a strategy for reducing the frequency of updating the matrix of the
system of equations that generates the time coefficients of the POD, and (2) the influence of the
time step adjustment strategy on the computational cost of time integration.

2.1.1 Database Splitting

The POD basis functions are extracted from a database of snapshots generated by numerically
integrating the governing differential equations of the full-order model. Currently, it is common
to use a database that includes all the snapshots. Using a single database that covers the entire
time domain, however, could be too restrictive. For example, consider the transience during the
start-up of the flow. The large variation in time at start-up requires more modes than are necessary
to model the flow features present in the latter part of the simulation. A method to avoid this
problem is to split the database of snapshots.

11



Splitting the database into multiple subsets produces an auto-correlation matrix that contains
more relative energy in the first modes. Herein, energy (shown in Fig. 2.1) is defined as the
sum of all the POD eigenvalues, λi. The relative energy captured by the kth mode is defined as
λk/

∑M
i=1 λi. As the relative energy of the first modes increases, fewer POD modes are needed

in the reconstruction to approximate the solution. Consequently, the computational cost of the
reduced-order model decreases.

Computing the auto-correlation matrix for each database subset is a straightforward process.
Determining the bounds of each subset to reduce the computational cost is less trivial. Two methods
for the separation of the snapshots into subsets were explored.

The first method measured the time variation of the time coefficients, α, of the dominant modes
of each field variable. The variation of the time coefficients must be calculated and monitored for
several modes for every field variable. Monitoring all of these values can, in some cases, produce
conflicting information. An alternative to monitoring all five field variables was to monitor only
the field variables that most affect the flow. For the aeroelastic case, the flow was most affected by
the first modes of velocity in the chordwise direction.

The advantage of this method is that the end of the transient regime can be accurately detected
during calculation. The disadvantage of this method is that there is not a unique value that
determines the limit of the transience for all five field variables.

The second method proposed for separating the snapshots was to monitor the ratio of the change
in CPU time and the change in physical time, ∆tCPU/∆t. During transience, longer computation
times are needed per time step as shown in Fig. 2.2. The advantage of monitoring this parameter
is that the time slope is a single value that describes the behavior of all five field variables. The
disadvantage of this method is that it over predicts the end of the transience. The magnitude
of the slope decreased rapidly until t = 0.3 s and continued to decrease somewhat slower to a
quasi-constant value at t = 0.45 s. Placing the end of the transient region at t = 0.45 s is more
conservative than the 0.35 s predicted by the first method. Numerical testing showed that database
splitting produced a speed-up factor of approximately 1.5.
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Figure 2.2: Slope of the total CPU time vs physical time measured at 0.01 s increments.
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2.1.2 Novel Solver for Linear Systems with Quasi-symmetric Matrices

Let us consider the system of equations generated by projecting the mass conservation equation
onto the basis functions extracted from an ensemble of ρ snapshots. This system can be written
as (Cizmas, 2007)

Ãραρ = B̃ρ, (2.1)

where αρ is the vector of unknowns αρi . The ℓk element of the Ãρ matrix is

Ãρ
ℓk = {ϕℓ}T [A]{ϕk} −

NB
∑

nb=1

{ϕℓ}T [Anb]{ϕknb
}, ℓ, k = 1, . . . ,m (2.2)

The Ãρ matrix is not symmetrical because of the second term −∑NB
nb=1 {ϕℓ}T [Anb]{ϕknb

} of
the element Ãρ

ℓk. The matrix would be symmetrical if {ϕk} = {ϕknb
}. The difference between the

two vectors {ϕk} and {ϕknb
} is small, however, because the latter vector is evaluated at slightly

different spatial locations compared to the first vector. Similarly, the systems of linear algebraic
equations that resulted from the momentum and energy conservation have matrices that are not
symmetrical. These matrices, however, are quite close to being symmetrical, and for this reason
will be called quasi-symmetrical. A typical example of a quasi-symmetrical matrix is the Ã matrix
obtained for POD approximation with 8 modes (Cizmas, 2007)

Ã =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

196.4486 63.3060 6.0469 0.5038 −21.3047 11.9071 2.3488 −6.8064
63.3060 903.4807 −44.1690 6.3410 14.0286 −7.4939 6.1636 19.8724
6.0459 −44.1687 243.2099 −20.7951 −164.8536 68.0529 19.3275 −42.8377
0.5039 6.3411 −20.7953 930.9194 31.0348 20.0166 14.3861 15.2768

−21.3042 14.0288 −164.8535 31.0347 890.8742 32.1664 42.8224 −23.8698
11.9068 −7.4940 68.0527 20.0167 32.1663 904.3555 −10.8230 26.7999
2.3477 6.1634 19.3267 14.3861 42.8222 −10.8228 872.6460 92.5161

−6.8042 19.8722 −42.8362 15.2768 −23.8695 26.7996 92.5161 763.9839

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.3)

The algorithm proposed herein for solving a system of equations Ax = b, in which the matrix A
must be positive definite and quasi-symmetrical, begins by splitting the matrix into a symmetrical
and a non-symmetrical part (Cizmas, 2007):

(As +An)x = b (2.4)

The decomposition of the A matrix into a symmetrical and non-symmetrical part is not unique.
This issue will be discussed later in the section, while for the moment one will consider that one of
the possible choices was used to split the A matrix.

A solution of the symmetrical part is then obtained by solving the system of equations

Asx
(1)
s = b (2.5)

The solution of (2.4) is decomposed in a component obtained by solving the system (2.5) and
a correction needed because the matrix A is non-symmetrical

x = x(1)
s + x(1)

n (2.6)

13



Substituting (2.6) into (2.4) and deducting (2.5) yields

(As +An)x
(1)
n = −An x(1)

s or

(As +An)x
(1)
n = b(1) (2.7)

Note that the system of equations (2.7) has the same matrix as (2.4). Consequently, an iterative

process can be used to find the solution. x
(1)
n can be considered a correction of the solution x

(1)
s

that is needed because the A matrix is non-symmetrical. The correction x
(1)
n can be split into

two components: a component x
(2)
s obtained by solving the system Asx

(2)
s = b(1) and a correction

needed because the matrix A is non-symmetrical, similarly to the approach used in (2.6):

x(1)
n = x(2)

s + x(2)
n (2.8)

Substituting (2.8) into (2.7) and using Asx
(2)
s = b(1) yields

(As +An)x
(2)
n = −An x(2)

s or (2.9)

(As +An)x
(2)
n = b(2) (2.10)

This process of approximating the solution yields after p steps

x = x(1)
s + x(2)

s + · · · + x(p)
s + x(p)

n , (2.11)

where the values x
(i)
s , 1 ≤ i ≤ p, are obtained by solving the linear system

Asx
(i)
s = b(i), (2.12)

where b(i) = −Anx(i−1)
s . The iterative process of adding corrections is stopped when x

(p)
s is smaller

than an imposed error.

The computation of x
(i)
s requires the solution of the linear system (2.12) several times. The

Cholesky decomposition is used for the factorization of the positive-definite symmetrical matrix
As. The method takes advantage of the fact that the As is constant and only the right-hand-side
vector b(i) changes.

The method proposed herein replaced the LU decomposition (Press et al., 1992, p. 34) that
was previously used to solve the linear algebraic systems (Yuan et al., 2005). For a system with
m equations, the number of operations for the LU decomposition is m3/3 while the number of
operations for the Cholesky decomposition is m3/6.

As mentioned previously in this section, the decomposition of the A matrix into a symmetrical
and a non-symmetrical part is not unique. Two decompositions were explored herein in order to
evaluate their effect on the convergence of the solver algorithm.

In the first decomposition, the A matrix, aij , i, j = 1, . . . ,m, was split such that the symmetrical
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and non-symmetrical parts were

As =











a11 a21 . . . am1

a21 a22 . . . am2
...

...
...

am1 am2 . . . amm











(2.13)

An =











0 a12 − a21 . . . a1m − am1

0 0 . . . a2m − am2
...

...
...

0 0 . . . 0











In the second decomposition, the A matrix was split into a symmetrical matrix As and skew-
symmetrical matrix An

As =
1

2
(A+AT ) (2.14)

An =
1

2
(A−AT )

These two decompositions were applied to solve the system of equations Ax = b where the A
matrix was given by (2.3) and the right-hand-side term b was

b = {−33.601 113.487 − 8.818 39.586 − 21.221 33.225 − 49.507 17.622}T .

For an imposed error of 10−9, the iterative solver algorithm converged for both decompositions in

three steps. The vector of corrections x
(i)
s , shown in Table 2.1, indicates that in these cases the

matrix decomposition had a minimal effect on the convergence. The Euclidean norm of the relative
error between the solutions obtained using the two decompositions was 8.9 · 10−31.

Numerical tests showed that three to four x
(i)
s terms in (2.11) were usually sufficient to obtain

a solution with an error less than 10−6. Consequently, three to four x
(i)
s solutions of the linear

algebraic system of equations (2.12) must be computed. Since only the right-hand-side term b(i)

changes while the matrix As is constant, the number of operations for the proposed method was

increased by a factor proportional to m2 multiplied by the number of x
(i)
s terms in (2.11). As long

as m is larger than 4, the computational cost of the proposed method is approximately half that
of the LU decomposition.

The magnitude of the non-symmetrical terms was gradually increased in numerical tests. Herein,
the degree of non-symmetry was defined as (Li et al., 2003)

η = ||A−AT ||F /||A+AT ||F

where || ||F indicates the Frobenius (or the Hilbert-Schmidt) norm (Golub and van Loan, 1989,
p. 56). The solution of the Ax = b system mentioned above was computed for three error levels:
10−6, 10−9, and 10−12. The A matrix was decomposed using split option 1 (2.13). The degree
of non-symmetry of the A matrix was increased by multiplying the non-symmetric matrix As by
different factors X, ranging from 1 to 5 ·108. The variation of the degree of non-symmetry of matrix
A as a function of the factor X is shown in Fig. 2.3.

The variation of the number of iterations needed for convergence as a function of the degree
of non-symmetry η is shown in Fig. 2.4(a). It is remarkable that five or less iterations are needed
for the convergence of the solution for degree of non-symmetry η = 0.01 that corresponds to a
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Table 2.1: Vector of corrections x
(i)
s corresponding to matrix (2.3) for decompositions (2.13) and

(2.14).

Split 1 (2.13) Split 2 (2.14)

x
(1)
s x

(2)
s x

(3)
s x

(1)
s x

(2)
s x

(3)
s

1 0.2205E+00 -0.5529E-06 0.7659E-12 0.2205E+00 -0.3159E-06 -0.3772E-11

2 -0.1401E+00 0.3505E-07 -0.1631E-12 -0.1401E+00 0.4948E-07 0.2289E-12

3 0.3053E-01 -0.2586E-06 -0.3920E-12 0.3053E-01 0.3431E-06 -0.2669E-11

4 -0.4188E-01 -0.1645E-07 0.8489E-14 -0.4188E-01 0.1406E-07 0.5404E-14

5 0.3669E-01 -0.8025E-07 -0.6626E-13 0.3669E-01 -0.2367E-07 -0.6342E-12

6 -0.4223E-01 0.4975E-07 0.3221E-13 -0.4223E-01 0.4024E-07 0.3478E-12

7 0.5685E-01 0.1344E-07 0.1147E-13 0.5685E-01 0.1726E-06 0.6542E-13

8 -0.1916E-01 -0.2588E-07 -0.1567E-13 -0.1916E-01 -0.4003E-06 -0.9619E-13

multiplying factor X = 10, 000. The number of iterations increased to approximately 20 for η
larger than 0.1 which correspond to multiplying factors larger than 105. Certainly at these large
X values the matrix is far from a quasi-symmetric matrix. If the multiplying factor X is further
increased, the matrix is no longer positive definite and the algorithm cannot be used because it
relies on the Cholesky decomposition.

The Eulerian norm of the difference between the solution obtained using the LU decomposition
and the method proposed herein is shown in Fig. 2.4(b) as a function of the degree of non-symmetry
η. The norm of the difference increases as the degree of non-symmetry increases. The norm of
difference is, however, smaller than 10−10 even for values of η as large as 0.1. Consequently, the
method can be applied to a larger class of matrices than just matrices obtained in the proper
orthogonal decomposition method, as long as these matrices are positive definite.

2.2 Proper Orthogonal Decomposition Method for Flows with
Discontinuities

2.2.1 Augmented Proper Orthogonal Decomposition Method

The large computational time of full-order model solutions of high-fidelity, unsteady aerodynamics
is a limiting factor for parametric studies in aeroelasticity. Note that in aeroelasticity, the term
high-fidelity aerodynamic models currently means Reynolds-averaged Navier-Stokes solvers. To
decrease computational time, reduced-order models are being developed. As illustrated above, a
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Figure 2.3: Degree of non-symmetry η as a function of the multiplying factor X.

promising reduced-order model is based on proper orthogonal decomposition (POD). This section
presents a new POD approach that can better model flows with discontinuities, such as shock
waves.

POD is a method for extracting spatially dependent orthogonal basis functions, {ϕ(x)} and
time dependent orthonormal amplitude coefficients, {α(t)}, from a function u(x, t) that varies in
both time and space. The function is usually parametrized by time to form a collection of M
snapshots, u(x, tk), k ∈ [0,M ]. In the POD approximation,

u(x, t) =

m
∑

j=0

αj(tk)ϕj(x), m ≤M − 1,

the basis functions are computed such that the average least-squares truncation error

εm =

〈

∥

∥

∥

∥

∥

∥

u(x, tk) −
m
∑

j=0

αj(tk)ϕj(x)

∥

∥

∥

∥

∥

∥

2
〉

is a minimum. Here || · || denotes the L2-norm given by ||f || = (f, f)
1

2 , (, ) denotes the Euclidean
inner product, and 〈 · 〉 denotes an ensemble average over the number of observations, 〈f〉 =
∑M

k=1 f(x, tk)/M (Holmes et al., 1996).
The current POD methods produce unphysical oscillations for flows with moving discontinues.

These oscillations are due to dispersion errors caused by the superposition of modes of increasing
frequency. This phenomenon is well known and is often referred to as the Gibbs phenomenon.

Lucia et al. (Lucia et al., 2003) have studied the problem of modeling flows with moving shocks
using the POD method. They have proposed a domain decomposition method where the spatial
domain was divided into areas where shocks were possible and where shocks were not possible. A
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Figure 2.4: Effect of degree of non-symmetry on: (a) number of iterations, and (b) Eulerian norm
of difference between the solutions of the LU decomposition and the present method.

full-order model was solved where shocks were possible and the rest of the domain was solved using
a POD-based reduced-order model (ROM). This method is somewhat inefficient, particularly when
a shock travels through a large portion of the spatial domain.

To better model flows with discontinuities, we propose augmenting the POD database with
a set of discontinuity modes. The purpose of the discontinuity modes is to capture the moving
discontinuities exactly, without the need for domain decomposition. The POD approximation can
then be expressed as

u(x, tk) =
m
∑

j=0

αj(tK)ϕj(x) +

mA
∑

ℓ=1

βℓ(tk)ψℓ(x, tk), (2.15)

where ψℓ are the discontinuity modes and βℓ their time coefficients.
Note that the since the POD method is guaranteed to produce orthogonal basis functions,

the POD basis functions are linearly independent. The discontinuity modes, however, are not
guaranteed to be linearly independent of the POD modes. Therefore, one must verify the linear
independence of the discontinuity modes by appending them to the POD modal matrix and com-
puting the singular values. As long as the smallest singular value is larger than a small number,
the appended modes are linearly independent.

To illustrate the augmented POD approach we will use the first-order wave equation

∂u

∂t
+ c

∂u

∂x
= 0, (2.16)

which is the simplest model for a moving discontinuity. This simple model was chosen to test the
augmented POD method due to the ease of predicting the discontinuity locations

xs,ℓ(ti) = xs,ℓ(t = 0) + cti.
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Here the discontinuity modes are defined as

ψℓ(x, ti) =

{

1 x ≤ xs,ℓ(ti)

0 x > xs,ℓ(ti)

where xs,ℓ(ti) is the location of the ℓ-th discontinuity at time t = ti.
Substituting (2.15) into (2.16) yields

m
∑

j=1

α̇j(tk)ϕj(x) +

ma
∑

ℓ=1

β̇ℓ(tk)ψℓ(x, tk) +

ma
∑

ℓ=1

βℓ(tk)ψ̇ℓ(x, tk)

+ c
m
∑

j=0

αj(tk)ϕ
′
j(x) +

ma
∑

ℓ=1

βℓ(tk)ψ
′
ℓ(x, tk) = 0 (2.17)

where u′ := ∂u
∂x

and u̇ := ∂u
∂t

are used for the spatial and temporal derivatives, respectively.
A ROM was constructed by doing a Galerkin projection of (2.17) onto the augmented basis

functions, which produced a system of ordinary differential equations (ODEs)

[A]

{

α̇

β̇

}

+ [B]

{

α

β

}

+ {d} = {0}, (2.18)

where [A] ∈ R
m+ma × R

m+ma , {α} ∈ R
m, {β} ∈ R

ma and {d} ∈ R
m+ma . The ODE system

(2.18) was solved using a Runge-Kutta-Fehlberg routine (Fehlberg, 1969). Further details of the
implementation are given in (Brenner et al., 2009).

For this test case, the initial velocity profile was a simple quadratic function

u(x, t) = a+ b(x− ct) + d(x− ct)2.

A single discontinuity was introduced in the initial condition according to

u(x, t = 0) =

{

a+ bx+ dx2 + 1 x ≤ xs,1(t = 0),

a+ bx+ dx2 x > xs,1(t = 0).

Since only one discontinuity is present in the flow, only one discontinuity mode was needed, i.e.,
ma = 1.

Figure 2.5 shows the velocity profile after one time unit for a full-order model, a POD-based
ROM with no augmentation and a POD-based ROM with augmentation. The full-order model
solution was computed using an explicit finite difference method that was first-order accurate in
space and time and shows some numerical dissipation around the discontinuity. The ROM without
augmentation shows the characteristic oscillations of the Gibbs phenomenon. The ROM with
augmentation produces the best results, showing a crisp representation of the discontinuity with
only one POD mode and one discontinuity mode.

2.2.2 Discontinuities Capturing using Mathematical Morphology

The POD acceleration methods resulted in a reduction of the computational time of two orders of
magnitude compared to the full-order model (Cizmas et al., 2008), as mentioned in the previous
section. In spite of the speed-up values, the effectiveness of the proper orthogonal decomposition
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Figure 2.5: Velocity profile at t = 1.0 for full-order model, reduced-order model with 20 modes
and no discontinuity mode, and reduced-order model with 2 modes, including a discontinuity
mode (Brenner et al., 2009).

method is challenged by the presence of flow discontinuities, such as shock waves (Lucia et al., 2003).
To improve POD robustness and performance when dealing with discontinuities, such as shock
waves, we developed a POD method in which the basis functions were augmented by discontinuity
basis functions, as shown in 2.2.1. The discontinuity basis functions were generated by detecting
the flow discontinuities in the full-order model using a morphology method. This section presents
the methodology we used to detect these discontinuities.

Developed in the 1960’s by Georges Matheron and Jean Serra at the Ecole des Mines de Paris,
France, mathematical morphology is a method for the analysis of spatial structures (Soille, 2003).
Morphology is heavily based on set theory, integral geometry, and lattice algebra. Morphology was
originally developed to describe porous media, where the porous material can be characterized as a
binary image containing pores or solid surrounding material (Soille, 2003). While this method has
primarily been used in the image processing community, it also has been used on a wide variety
of spatial structures. Herein the theory and application of morphology is extended to locating
discontinuities in flows.

Morphology attempts to extract structures of interest located within the whole spatial domain,
herein referred to as an image, by performing various set operations over so-called structuring
elements. Structuring elements are used to probe the image with various shapes that describe the
structure of interest. Structuring elements can take on any number of shapes, from simple rods
(straight elements) to circles, or in extreme cases, galaxy shapes. Structuring elements can also
be applied in combinations to create larger structuring elements of varying shapes. While there
is not a limitation to what shapes or size the structuring elements can take, these structuring
elements must be aligned in the same direction throughout the image. Failure to maintain the
same alignment throughout will distort the structures that are sought. In addition, structuring
elements can only be applied to highly structured images. Images not in a highly structured state
must be transformed to this state before applying the morphological operations as usual.
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The structuring element, denoted as b, is a locally defined quantity in the local coordinates
(k, l). The values of (k, l) are defined depending on the total size of the structuring element. If
(0, 0) is the point of interest in local (k, l) coordinates, then for a five point vertical rod structuring
element the global coordinates would be (i, j−2l), (i, j− l), (i, j), (i, j+ l), and (i, j+2l). b assumes
the value of the image, f , at these coordinates.

While morphology can perform a wide variety of operations over the structuring elements, all
of these operations can be described by combinations of two elementary operations: erosion and
dilation. Both of these operations can be described as shifts in the data set. Erosion is the minimum
of these shifts of the image, f(i, j), over the structuring element, b(k, l), given as

e(f) = min(f(i+ k, j + l) − b(k, l)). (2.19)

Dilation is the maximum of these shifts over the same structuring element,

d(f) = max(f(i− k, j − l) + b(k, l)). (2.20)

Using equations (2.19) and (2.20) in conjunction, more powerful operations can be performed.
While these operations are not inherently morphological in nature, they are useful for detecting
discontinuities in flows. These operations include blurring, blur/erosion, dilation/blur, and thresh-
olding.

Blurring is used in image processing as a noise reduction technique. This operation is required
for a preliminary elimination of extreme values. Blurring is also required for locating step-type
edges (Lee et al., 1987). Without blurring, the area around a step edge is not a local maximum or
minimum, and the erosion and dilation operations will not extract discontinuities of that type (Lee
et al., 1987). Blurring is defined as

blur(f) =

∑i+L
p=i−L f(p)

K
L =

K − 1

2
. (2.21)

Here blurring is defined over the reduced stencil size of nodes, K.
While blurring is necessary, using a reduced stencil that is too large will over-blur the image,

resulting in overly distorted edges that are impossible to discern. A good reduced stencil size for
blurring is K = 3 (Lee et al., 1987); i.e., when using a vertical rod structuring element and looking
at the center point, the values used to blur the center point are, in global coordinates: (i, j−l), (i, j),
and (i, j + l). A consequence of this stencil size for blurring is that the structuring elements must
be at least two elements larger than the blurring stencil in order to mitigate possible over-distortion
of the edges.

The blur/erosion (be) and dilation/blur (db) operators were proposed by Lee et al. (1987). These
operations act over the structuring elements and are used to eliminate obvious points where edges
are not located using the standard erosion and dilation operations in conjunction with blurring.
These combination operators initially blur the image and then apply the erosion and dilation
operators to the blurred image. The be and db operators are defined as

be(f) = blur(f) − e(blur(f)) (2.22)

and

db(f) = d(blur(f)) − blur(f)., (2.23)

respectively.
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The last operation required to detect edges is thresholding. Thresholding is an image segmen-
tation technique used to isolate areas of interest in the image. For non-binary images, thresholding
is almost always required to completely extract the desired information from the image. Grayscale
images can take on a wide variety of values, causing the previously described operations to assign
more than two points to an edge, where the edge is defined as being only two points in width;
thresholding ensures that each edge is only two points in width. Thresholding can be applied glob-
ally or semi-globally, where globally is a binary fix to the image and semi-globally maintains the
original value of the edge. We use global thresholding, defined as (Ritter and Wilson, 2000)

thres(f) =

{

1 α ≤ f ≤ β
0 otherwise

The constants α and β are user defined values specific for the image or set of images if the group
of images describe the same general phenomenon.

All of the previously described operations, when combined, allow for the detection of edges in
images with two-point edge strength. The algorithm for edge detection, described by Lee et al.
(1987), is adapted here for multiphase flow.

1. Read in the images with discontinuities to be detected.

2. Create the structuring elements. Herein, we used four rod-type structuring elements that are
five units in length and have the following orientations: horizontal, vertical, and diagonal (45
and 135 degrees with respect to the horizontal).

3. Blur the image using Equation (2.21) with K = 3.

4. Compute the erosion and dilation of the blurred images using equations (2.19) and (2.20).

5. Compute values of the blur/erosion and dilation/blur operators with equations (2.22) and (2.23).

6. Determine the maximum values of the be and db operators

max(bei(f)) i = 1, ..., 4

and

max(dbi(f)) i = 1, ..., 4.

where i represents each of the four structuring elements.

7. Determine the edge strength

Indicator(f) = min(max(db(f)),max(be(f))). (2.24)

8. Apply the global thresholding to the images given by Equation (2.24). This gives edges for
the discontinuity that are only two points in width.

The method developed to detect discontinuities was tested on an airfoil operating at Mach 0.85.
Figure 2.6 shows the edge strength index (2.24) contours. This indicator captures not only the
shock discontinuity shown in Fig. 2.7 but also the discontinuities due to the vortex shedding and
the interaction between the shock and the boundary layer. The discontinuities were detected with
two-point accuracy.

Mathematical morphology was shown to extract key features of the flow by using a simple set
of operations. Regardless of the original grid arrangement of the data, the morphological detection
algorithm captured the discontinuities.
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Figure 2.6: Edge strength index. Figure 2.7: Mach number contours.
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Chapter 3

A Novel Nonlinear Beam Model

This chapter presents the development of a novel nonlinear beam model. This work was motivated
by the need to reduce the computational time for structural modeling and to allow us to use
continuation methods. The first section presents the derivation of the nonlinear equations of motion,
followed by the modal representation of the beam. The third section describes the numerical
implementation of the nonlinear beam solver, followed by the solver validation. The last section
briefly presents the development of a finite element method code for plates that was needed to avoid
using canned commercial codes and to maintain control of the source code while doing aeroelastic
simulations.

3.1 Derivation of the Nonlinear Equations of Motion

3.1.1 Overview

In this section, the nonlinear flexural-flexural-torsional equations of motion are derived for a beam
with a straight elastic axis, along which the cross sections can vary arbitrarily and abruptly. The
cross sections of the undeformed beam can have a center of mass offset from the elastic axis and the
principal centroidal and bending axes variably and uniquely rotated about the elastic axis. Finally,
due to the consistent retention of nonlinear terms, the equations are valid for large deformations,
within the scope of the validity of elasticity.

3.1.2 Definition of Parameters

The beam is assumed to have an elastic axis that is straight when undeformed. The inertial reference
coordinate system N (x, y, z) is located at the fixed end of the beam, where the x-axis is coincident
with the undeformed elastic axis and positive in the direction of the free end. The cross-sectional
coordinate system B (ξ, η, ζ) is fixed to each cross section during deformation. When the beam is
undeformed, the cross-sectional coordinate system is parallel to the reference coordinate system. To
describe the orientation of the cross-sectional coordinate system relative to the reference coordinate
system, three Euler angle rotations are invoked. The inertial frame is rotated an angle ψ about the
z-axis, θ about the first intermediate y-axis, and φ about the second intermediate x-axis, which is
in turn the ξ-axis. Each of these angles is a function of time t and position s along the deformed
elastic axis. These coordinate systems and transformations are similar to those used in Crespo da
Silva and Glynn (1978a). Figure 3.1 illustrates the two coordinate systems.
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Figure 3.1: Diagram of Deformed Beam

To characterize the beam, the following parameters are used.

m(s) =

∫∫

A

ρ dη dζ (3.1a)

jξ(s) =

∫∫

A

ρ
(

η2 + ζ2
)

dη dζ (3.1b)

jη(s) =

∫∫

A

ρ ζ2dη dζ (3.1c)

jζ(s) =

∫∫

A

ρ η2dη dζ (3.1d)

jηζ(s) = −
∫∫

A

ρ η ζ dη dζ (3.1e)

Dξ(s) = GK (3.1f)

Dη(s) =

∫∫

A

E ζ2 dη dζ (3.1g)

Dζ(s) =

∫∫

A

E η2 dη dζ (3.1h)

Dηζ(s) = −
∫∫

A

E η ζ dη dζ (3.1i)

In this report, nonlinearities will be described by an order that will indicate how many factors of
the displacements u, v, w, and φ comprise a term. These factors may include spatial and/or time
derivatives of the displacements.
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3.1.3 The Lagrangian

The angular velocity expressed in the cross-sectional frame is

ω(s, t) =







φ̇− ψ̇ sin θ

ψ̇ cos θ sinφ+ θ̇ cosφ

ψ̇ cos θ cosφ− θ̇ sinφ)







B

=







ωξ
ωη
ωζ







B

. (3.2)

Love’s kinetic analogy (Crespo da Silva and Glynn, 1978a; Love, 1944) enables the curvature
vector to be calculated in a manner similar to that of the angular velocity, replacing temporal
differentiation with spatial differentiation:

ρ(s, t) =







φ′ − ψ′ sin θ
ψ′ cos θ sinφ+ θ′ cosφ)
ψ′ cos θ cosφ− θ′ sinφ)







B

=







ρξ
ρη
ρζ







B

. (3.3)

One of the fundamental assumptions of the beam model is that cross sections perpendicular to
the elastic axis remain perpendicular and rigid. The inertial velocity of each point on a cross section
of the beam can be decomposed into the sum of the velocity of the intersection of the elastic axis
with that cross section and the velocity of the point on the cross section, relative to the intersection:

V =







u̇
v̇
ẇ







N

+ ω ×







0
η
ζ







B

. (3.4)

Resolving the second velocity contribution into the inertial frame provides

V =







(ζωη − ηωζ) cψcθ + ηωξ (sφsψ + cφcψsθ) + ζωξ (cφsψ − cψsφsθ) + u̇
(ζωη − ηωζ) sψcθ − ηωξ (sφcψ − cφsψsθ) − ζωξ (cφcψ + sψsφsθ) + v̇

− (ζωη − ηωζ) sθ + ηωξcφcθ − ζωξsφcθ + ẇ







N

(3.5)

Correspondingly, the cross-sectional kinetic energy is determined by

T =
1

2

∫∫

A

ρ V·V dη dζ, (3.6)

which, when expanded, simplifies to

T =
1

2
m
(

u̇2 + v̇2 + ẇ2
)

+
1

2

(

jξω
2
ξ + jηω

2
η + jζω

2
ζ

)

+ jηζωηωζ

+meζωξ [(cφsψ − sφcψsθ) u̇− (sφsψsθ + cφcψ) v̇ − sφcθẇ]

+meζωη [cψcθu̇+ cθsψv̇ − sθẇ]

+meηωξ [(sφsψ + cφcψsθ) u̇+ (cφsψsθ − sφcψ) v̇ + cφcθẇ]

−meηωζ [cψcθu̇+ cθsψv̇ − sθẇ] . (3.7)

Additionally, the potential energy of each cross section is

V =
1

2

(

Dξρ
2
ξ +Dηρ

2
η +Dζρ

2
ζ

)

+Dηζρηρζ . (3.8)

With the kinetic and potential energy for each cross section known, the cross-sectional Lagrangian
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is simply

l = T − V. (3.9)

3.1.4 Inextensionality Constraint

It is assumed that the length of the beam, specifically the elastic axis, remains constant during
deformation. Applying the Pythagorean theorem to an infinitesimal length ds of the beam yields

ds2 = dv2 + dw2 + (ds+ du)2 (3.10)

or

1 = v′
2
+ w′2 +

(

1 + u′
)2
. (3.11)

Furthermore, this constraint enables ψ and θ to be expressed in terms of the derivatives of the
displacement:

ψ = tan−1 v′

1 + u′
(3.12)

θ = tan−1 −w′

√

(1 + u′)2 + v′2
(3.13)

3.1.5 Hamilton’s Principle

With the Lagrangian known for each cross section and multiplying the inextensionality constraint by
a Lagrange multiplier, the extended form of Hamilton’s principle provides the governing equations
of motion associated with the variations δu, δv, δw, and δφ (Crespo da Silva and Glynn, 1978a;
Meirovitch, 1967). These are derived in Appendix A and presented below:

G′
u =

[

Aψ
∂ψ

∂u′
+Aθ

∂θ

∂u′
+ λ

(

1 + u′
)

]′

=
∂2l

∂t∂u̇
−Qu (3.14)

G′
v =

[

Aψ
∂ψ

∂v′
+Aθ

∂θ

∂v′
+ λv′

]′

=
∂2l

∂t∂v̇
−Qv (3.15)

G′
w =

[

Aθ
∂θ

∂w′
+ λw′

]′

=
∂2l

∂t∂ẇ
−Qw (3.16)

Aφ = Qφ, (3.17)

where

Aα =
∂2l

∂t∂α̇
+

∂2l

∂s∂α′
− ∂l

∂α
(α = ψ, θ, φ). (3.18)

The above equations are simplified by carrying out the following substitutions and Taylor series
expansions:

ψ = tan−1 v′

1 + u′
≈ v′

(

1 +
v′2

6
+
w′2

2

)

(3.19a)
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∂ψ

∂u′
=

−v′
(1 + u′)2 + v′2

≈ −v′ (3.19b)

∂ψ

∂v′
=

(1 + u′)

(1 + u′)2 + v′2
≈ 1 − v′2

2
+
w′2

2
(3.19c)

θ = tan−1 −w′

√

(1 + u′)2 + v′2
≈ −w′

(

1 +
w′2

6

)

(3.19d)

∂θ

∂u′
=

w′ (1 + u′)
√

(1 + u′)2 + v′2
≈ w′ (3.19e)

∂θ

∂v′
=

v′w′

√

(1 + u′)2 + v′2
≈ v′w′ (3.19f)

∂θ

∂w′
= −

√

(1 + u′)2 + v′2 ≈ −1 +
w′2

2
(3.19g)

u′ = −1

2

(

v′
2
+ w′2

)

(3.19h)

u = −1

2

∫ s

0

(

v′
2
+ w′2

)

dŝ. (3.19i)

The terms in the extensional equation (3.14) are expanded in Taylor series to quadratic order, and
the terms in the bending and torsional equations (3.15)-(3.17) and expanded to cubic order. The
extensional equation only requires quadratic order as it is used to determine λ, which only appears
when multiplied by a spatial derivative of a displacement in the bending equations.

3.1.6 Application of the Galerkin Method

Invoking the Galerkin method facilitates discretization of the beam, particularly with regard to
abrupt property changes along the length. For a linear cantilevered beam, the boundary conditions
are known (Bisplinghoff et al., 1996). For the case of the nonlinear beam, the boundary conditions
remain the same and are obtained from the boundary components resulting from integration by
parts of Hamilton’s principle (Crespo da Silva and Glynn, 1978b).

3.1.6.1 Bending Equations of Motion

The following set of mode shapes (Bisplinghoff et al., 1996) is used when applying the Galerkin
method to the bending equations of motion.

Wi(s) = cosh

(

βis

L

)

− cos

(

βis

L

)

− σi

[

sinh

(

βis

L

)

− sin

(

βis

L

)]

, (3.20)

where

σi =
coshβi + cosβi
sinhβi + sinβi

(3.21)

1 + cosβi coshβi = 0. (3.22)

Additionally, Wi(0) = W ′
i (0) = W ′′

i (L) = W ′′′
i (L) = 0.
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Multiplying (3.15) and (3.16) by Wi, expanding the rightmost side, integrating over the length
of the beam, and performing integration by parts yields

Wi(L)

[

Aψ
∂ψ

∂v′
+Aθ

∂θ

∂v′

]

s=L

−
∫ L

0
W ′
i

(

Aψ
∂ψ

∂v′
+Aθ

∂θ

∂v′

)

ds+

∫ L

0
Wi

(

λv′
)′
ds

=

∫ L

0
Wi

[

mv̈ −meη

(

φ̇2 + φφ̈+ φ̈v′w′ + 2φ̇w′v̇′ + v̇′2 + 2φ̇v′ẇ′ + 2φv̇′ẇ′
)

−meη
(

v′v̈′ + φw′v̈′ + φv′ẅ′
)

+meζ

(

φφ̇2 − φ̈+
1

2
φ2φ̈+

1

2
φ̈v′

2
+ 2φ̇v′v̇′

)

+meζ
(

φv̇′2 − 2v̇′ẇ′ + φv′v̈′ − w′v̈′ − v′ẅ′
)

−Qv

]

ds (3.23)

and

Wi(L)

[

Aθ
∂θ

∂w′

]

s=L

−
∫ L

0
W ′
i

(

Aθ
∂θ

∂w′

)

ds+

∫ L

0
Wi

(

λw′
)′
ds

=

∫ L

0
Wi

[

mẅ −meη

(

φφ̇2 − φ̈+
1

2
φ2φ̈+

1

2
φ̈w′2 + 2φ̇w′ẇ′

)

−meη
(

φẇ′2 + φw′ẅ′
)

−meζ

(

φ̇2 + φφ̈+ ẇ′2 + w′ẅ′
)

−Qw

]

ds. (3.24)

3.1.6.2 Torsional Equation of Motion

The set of mode shapes (Bisplinghoff et al., 1996) used when applying the Galerkin method to the
torsional equation of motion is

Φi(s) =
√

2 sin
γis

L
, (3.25)

where

γi =
(2i− 1)π

2
. (3.26)

Furthermore, Φi(0) = Φ′
i(L) = 0.

Analogous to the bending equations, (3.17) is multiplied by Φi and integrated over the length
of the beam, providing

∫ L

0
AφΦids =

∫ L

0
QφΦids. (3.27)

3.1.7 The Lagrange Multiplier

The terms of interest in (3.23) and (3.24) are

∫ L

0
Wi

(

λv′
)′
ds and

∫ L

0
Wi

(

λw′
)′
ds, which are

obtained from (3.14). Letting Au(s, t) = Aψ
∂ψ

∂u′
+ Aθ

∂θ

∂u′
and observing that u and the time and
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space derivatives thereof are quadratic terms, a quadratic expression for Au is obtained:

Au(s, t) = jηζ
(

v̈′w′ + v′ẅ′
)

− jζv
′v̈′ − jηw

′ẅ′

+D′
ζv

′v′′ +D′
ηw

′w′′ +Dζv
′v′′′ +Dηw

′w′′′

−D′
ηζ

(

w′v′′ + v′w′′
)

−Dηζ

(

w′v′′′ + v′w′′′
)

. (3.28)

Equation (3.14) is integrated from the free end of the beam to s:

∫ s

L

[

Au(ŝ, t) + λ(ŝ, t)
(

1 + u′
)]′
dŝ =

∫ s

L

[

mü+meη

(

−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′
)

+meζ

(

φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′
)

−Qu

]

dŝ (3.29)

Since λ is quadratic, (1 + u′)−1 ≈ 1. Knowing this, that Gu(L, t) = 0 (Crespo da Silva and Glynn,
1978b), and invoking the expression for u obtained in (3.19i), (3.29) simplifies to

λ(s, t) = −Au(s, t) +

∫ s

L

[

−m

∫ ŝ

0

(

v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′
)

ds̃

+meη

(

−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′
)

+meζ

(

φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′
)

−Qu

]

dŝ, (3.30)

and at L,

λ(L, t) =
[

−jηζ
(

v̈′w′ + v′ẅ′
)

+ jζv
′v̈′ + jηw

′ẅ′
]

s=L
. (3.31)

With λ known,

∫ L

0
Wi

(

λv′
)′
ds and

∫ L

0
Wi

(

λw′
)′
ds are determinable. Beginning with integration

by parts of the former,

∫ L

0
Wi

(

λv′
)′
ds = −

∫ L

0
W ′
iv

′λds+Wi(L, t)λ(L, t)v′(L, t), (3.32)

which is expanded as

∫ L

0
Wi

(

λv′
)′
ds =

∫ L

0
W ′
iv

′Au(s, t)ds

−
∫ L

0
W ′
iv

′

∫ s

L

{

−m

∫ ŝ

0

(

v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′
)

ds̃

+meη

(

−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′
)

+meζ

(

φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′
)

−Qu

}

dŝds

+Wi(L, t)λ(L, t)v′(L, t). (3.33)
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Au contains derivatives of the spatially dependent parameters, which are eliminated by further
integrating by parts, ultimately yielding

∫ L

0
Wi

(

λv′
)′
ds = −

∫ L

0

{

Dζ

(

v′v′′
2
W ′
i + v′

2
v′′′W ′

i + v′
2
v′′W ′′

i + v′v′′
2
W ′
i

)

+Dη

(

v′w′′2W ′
i + v′w′w′′′W ′

i + v′w′w′′W ′′
i + v′′w′w′′W ′

i

)

−Dηζ

(

v′′
2
w′W ′

i + v′v′′′w′W ′
i + v′v′′w′W ′′

i

)

−Dηζ

(

3v′v′′w′′W ′
i + v′

2
w′′′W ′

i + v′
2
w′′W ′′

i

)

}

ds

+

∫ L

0
W ′
iv

′
{

jηζ
(

v̈′w′ + v′ẅ′
)

− jζv
′v̈′ − jηw

′ẅ′

+Dζv
′v′′′ +Dηw

′w′′′ −Dηζ

(

w′v′′′ + v′w′′′
)

}

ds

−
∫ L

0
W ′
iv

′

∫ s

L

{

−m

∫ ŝ

0

(

v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′
)

ds̃

+meη

(

−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′
)

+meζ

(

φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′
)

−Qu

}

dŝds

+Wi

[

−jηζ
(

v′v̈′w′ + v′
2
ẅ′
)

+ jζv
′2v̈′ + jηv

′w′ẅ′
]

s=L
(3.34)

and similarly

∫ L

0
Wi

(

λw′
)′
ds = −

∫ L

0

{

Dζ

(

w′v′′
2
W ′
i + w′v′v′′′W ′

i + w′v′v′′W ′′
i + v′v′′w′′W ′

i

)

+Dη

(

w′w′′2W ′
i + w′2w′′′W ′

i + w′2w′′W ′′
i + w′w′′2W ′

i

)

−Dηζ

(

v′w′′2W ′
i + v′w′w′′′W ′

i + v′w′w′′W ′′
i

)

−Dηζ

(

3v′′w′w′′W ′
i + v′′′w′2W ′

i + w′2v′′W ′′
i

)

}

ds

+

∫ L

0
W ′
iw

′
{

jηζ
(

v̈′w′ + v′ẅ′
)

− jζv
′v̈′ − jηw

′ẅ′

+Dζv
′v′′′ +Dηw

′w′′′ −Dηζ

(

w′v′′′ + v′w′′′
)

}

ds

−
∫ L

0
W ′
iw

′

∫ s

L

{

−m

∫ ŝ

0

(

v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′
)

ds̃

+meη

(

−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′
)

+meζ

(

φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′
)

−Qu

}

dŝds

+Wi

[

−jηζ
(

v̈′w′2 + v′w′ẅ′
)

+ jζv
′v̈′w′ + jηw

′2ẅ′
]

s=L
. (3.35)
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3.1.8 The Equations of Motion

At this point, everything can be determined. Remaining terms containing derivatives of the spatially
dependent parameters are integrated by parts to distribute the derivative into the co-factors.

Consequently, the equation of motion in the y-direction for each i is

Wi(L)

[

(meη −meζφ)

∫ s

0

(

v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′
)

dŝ+meη
(

−v̈v′ − φv̈w′
)

+meζ
(

φv̈v′ − v̈w′
)

+ jξ

(

φ̈w′ + φ̇ẇ′ + 2w′v̇′ẇ′ + w′2v̈′
)

+ jη

(

−φ̇ẇ′ + φ2v̈′
)

+jη

(

−φẅ′ + 2φφ̇v̇′
)

+ jζ

(

−2φφ̇v̇′ + v′v̇′2 + φ̇ẇ′ + v′ẇ′2 + v̈′ − φ2v̈′
)

+jζ

(

v′
2
v̈′ + φẅ′ + v′w′ẅ′

)

+ jηζ

(

2φ̇v̇′ + 4φφ̇ẇ′ + 2φv̈′ − ẅ′ + 2φ2ẅ′
)

−1

2
jηζ

(

v′
2
ẅ′ + w′2ẅ′

)

−Dξw
′φ′′
]

s=L

−
∫ L

0

{

W ′
i

[

(meη −meζφ)

∫ s

0

(

v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′
)

dŝ

+meη
(

−v̈v′ − φv̈w′
)

+meζ
(

φv̈v′ − v̈w′
)

+ jξ

(

φ̈w′ + φ̇ẇ′ + 2w′v̇′ẇ′ + w′2v̈′
)

+jη

(

−φ̇ẇ′ + φ2v̈′ − φẅ′ + 2φφ̇v̇′
)

+ jζ

(

−2φφ̇v̇′ + v′v̇′2 + φ̇ẇ′ + v′ẇ′2 + v̈′
)

+jζ

(

−φ2v̈′ + v′
2
v̈′ + φẅ′ + v′w′ẅ′

)

+ jηζ

(

2φ̇v̇′ + 4φφ̇ẇ′ + 2φv̈′ − ẅ′
)

+jηζ

(

2φ2ẅ′ − 1

2
v′

2
ẅ′ − 1

2
w′2ẅ′

)

+Dζ

(

v′v′′
2
+ v′′w′w′′

)

+Dηζ

(

−v′v′′w′′ + w′w′′2
)

+ v′
∫ s

L

−m
∫ ŝ

0

(

v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′
)

ds̃

+meη

(

−φ̈w′ − 2φ̇ẇ′ − v̈′ − φẅ′
)

+meζ

(

φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′
)

−Qudŝ

]

+W ′′
i

[

Dξ

(

φ′w′ + w′2v′′
)

+Dη

(

φ2v′′ − φw′′
)

+Dζ

(

v′′ − φ2v′′ + v′
2
v′′
)

+Dζ

(

φw′′ + v′w′w′′
)

+Dηζ

(

2φv′′ − w′′ + 2φ2w′′ − 1

2
v′

2
w′′ − 1

2
w′2w′′

)]}

ds

=

∫ L

0
Wi

(

mv̈ −meη

(

φ̇2 + φφ̈+ φ̈v′w′ + 2φ̇w′v̇′ + v̇′2 + 2φ̇v′ẇ′ + 2φv̇′ẇ′
)

−meη
(

+v′v̈′ + φw′v̈′ + φv′ẅ′
)

+meζ

(

φφ̇2 − φ̈+
1

2
φ2φ̈+

1

2
φ̈v′

2
)

+meζ

(

2φ̇v′v̇′ + φv̇′2 − 2v̇′ẇ′ + φv′v̈′ − w′v̈′ − v′ẅ′
)

−Qv

)

ds. (3.36)
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Additionally, the equation of motion in the z-direction is

Wi(L)

[

(meηφ+meζ)

∫ s

0

(

v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′
)

dŝ−meη
(

φv̈v′ + φẅw′
)

+meζ
(

−v̈v′ − ẅw′
)

− jξ

(

φ̇v̇′ + w′v̇′2
)

+ jη

(

−φ̇v̇′ − 2φφ̇ẇ′ − φv̈′ + ẅ′
)

+jη

(

−φ2ẅ′ + w′ẇ′2 + w′2ẅ′
)

+ jζ

(

φ̇v̇′ + w′v̇′2 + 2φφ̇ẇ′ + φv̈′ + φ2ẅ′
)

+jζv
′w′v̈′ − jηζ

(

−4φφ̇v̇′ + v′v̇′2 + 2φ̇ẇ′ + 2w′v̇′ẇ′ + v′ẇ′2 + v̈′ − 2φ2v̈′
)

−jηζ
(

1

2
v′

2
v̈′ +

1

2
w′2v̈′ + 2φẅ′ + 2v′w′ẅ′

)]

s=L

−
∫ L

0

{

W ′
i

[

(meηφ+meζ)

∫ s

0

(

v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′
)

dŝ

−meη
(

φv̈v′ + φẅw′
)

+meζ
(

−v̈v′ − ẅw′
)

− jξ

(

φ̇v̇′ + w′v̇′2
)

− jηφ̇v̇
′

+jη

(

−2φφ̇ẇ′ − φv̈′ + ẅ′ − φ2ẅ′ + w′2ẅ′ + w′ẇ′2
)

+ jζ

(

φ̇v̇′ + w′v̇′2
)

+jζ

(

2φφ̇ẇ′ + φv̈′ + φ2ẅ′ + v′v̈′w′
)

− jηζ

(

−4φφ̇v̇′ + v′v̇′2 + 2φ̇ẇ′
)

−jηζ
(

2w′v̇′ẇ′ + v′ẇ′2 + v̈′ − 2φ2v̈′ +
1

2
v′

2
v̈′ +

1

2
w′2v̈′ + 2φẅ′ + 2v′w′ẅ′

)

+Dξ

(

φ′v′′ + w′v′′
2
)

+Dηw
′w′′2 +Dζv

′v′′w′′ −Dηζ

(

v′′w′w′′ + v′w′′2
)

+w′

∫ s

L

−m
∫ ŝ

0

(

v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′
)

ds̃−meηφ̈w
′

+meη

(

−2φ̇ẇ′ − v̈′ − φẅ′
)

+meζ

(

φ̈v′ + 2φ̇v̇′ + φv̈′ − ẅ′
)

−Qudŝ

]

+W ′′
i

[

Dη

(

−φv′′ + w′′ − φ2w′′ + w′2w′′
)

+Dζ

(

φv′′ + φ2w′′ + v′v′′w′
)

+Dηζ

(

−v′′ + 2φ2v′′ − 1

2
v′

2
v′′ − 1

2
w′2v′′ − 2φw′′ − 2v′w′w′′

)]}

ds

=

∫ L

0
Wi

(

mẅ −meη

(

φφ̇2 − φ̈+
1

2
φ2φ̈+

1

2
φ̈w′2 + 2φ̇w′ẇ′

)

−meη
(

φẇ′2 + φw′ẅ′
)

−meζ

(

φ̇2 + φφ̈+ ẇ′2 + w′ẅ′
)

−Qw

)

ds. (3.37)
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Finally, the torsional equation of motion is

∫ L

0

{

Φi

[

(

meηw
′ −meζv

′
)

∫ s

0

(

v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′
)

dŝ

+meη

(

−φv̈ + ẅ − 1

2
φ2ẅ − v̈v′w′ − 1

2
ẅw′2

)

+meζ

(

−v̈ +
1

2
φ2v̈ − φẅ +

1

2
v̈v′

2
)

+jξ

(

φ̈+ v̇′ẇ′ + w′v̈′
)

+ jη
(

−φv̇′2 + v̇′ẇ′ + φẇ′2
)

+jζ
(

φv̇′2 − φẇ′2 − v̇′ẇ′
)

− jηζ
(

v̇′2 − ẇ′2 + 4φv̇′ẇ′
)

+Dη

(

φv′′
2 − v′′w′′ − φw′′2

)

+Dζ

(

−φv′′2 + v′′w′′ + φw′′2
)

+Dηζ

(

v′′
2
+ 4φv′′w′′ − w′′2

)

]

+ Φ′
iDξ

(

φ′ + v′′w′
)

}

ds =

∫ L

0
QφΦids. (3.38)

The effects of including all the cubic non-linear terms was assessed on the Heavy Goland wing.
The parameters of the Heavy Goland wing, which include airfoil shape, mass properties and wing
stiffness are presented in (Eastep and Olsen, 1980) and will not be repeated in here.

An analysis of the Heavy Goland wing using a nonlinear structural model and a simple aero-
dynamics approach was presented in (Strganac et al., 2005). The same nonlinear structural model
was later coupled with a RANS model (Cizmas et al., 2007). The structural model included the me-
chanics of both the traditional out-of-plane and torsional components plus an additional in-plane
mode of motion. This additional mode and the presence of nonlinear effects led to remarkable
nonlinear dynamic interactions (Cizmas et al., 2007). In both cases, the structural model did not
include all the cubic nonlinear terms.

The results shown in Figs. 3.2-3.3 highlight the effect of the cubic nonlinear terms of the struc-
tural model and underscore the importance of the nonlinear effects in aeroelastic simulations. Fig-
ure 3.2 shows that missing some of the cubic terms did not affect the LCO prediction. Figure-3.3,
however, shows that the numerical simulation using all cubic nonlinearities predicted flutter, while
the case that was missing some of the cubic nonlinear terms did not. Consequently, in the flutter
case, it was important to keep all the cubic terms.

3.2 Modal Representation

3.2.1 Introduction

The equations of motion (3.36)-(3.38) are nonlinear, coupled partial differential equations in time
and space. As mentioned previously, the boundary conditions are known. Therefore, it is possible
to represent the deformations as an infinite sum of the product of spatially dependent, orthogonal
mode shapes and time-dependent coefficients. Taking the mode shapes invoked in the Galerkin
method, the displacements can be expressed as follows:

w =
l
∑

i=1

wi(t)Wi(s) v =
m
∑

i=1

vi(t)Wi(s) φ =
n
∑

i=1

φi(t)Φi(s). (3.39)

Upon invoking these mode shapes, the partial differential equations reduce to a system of
ordinary differential equations in time, for which the time coefficients are the unknown quantities.
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Figure 3.2: Heavy Goland Wing time coefficients at LCO: (a) out-of-plane bending, and (b) pitch-
ing.

Therefore, the equations of motion are written in the following manner using linear and non-linear
arrays:

[ML +MNL]







ẅ

v̈

φ̈







+ [CL + CNL]







ẇ

v̇

φ̇







+ [KL +KNL]







w

v

φ







= FL + FNL, (3.40)

where w, v, and φ each represent vectors containing the time coefficients: {w1, ..., wl}T , {v1, ..., vm}T ,
and {φ1, ..., φn}T .

Each of the matrices is (l +m+ n)× (l +m+ n) and can be expressed as the concatenation of
9 submatrices with the following dimensions:





[l × l] [l ×m] [l × n]
[m× l] [m×m] [m× n]
[n× l] [n×m] [n× n]



 . (3.41)
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Figure 3.3: Heavy Goland Wing time coefficients at flutter: (a) out-of-plane bending, and (b)
pitching.

3.2.2 Linear Matrices

3.2.2.1 Linear Mass Matrix

The linear mass matrix is defined as follows:

[ML]i,j =

∫ L

0

(

WimWj +W ′
i jηW

′
j

)

ds−
[

WijηW
′
j

]

s=L

[ML]i,l+j = −
∫ L

0
W ′
i jηζW

′
jds+

[

WijηζW
′
j

]

s=L

[ML]i,l+m+j =

∫ L

0
WimeηΦjds

[ML]l+i,j = −
∫ L

0
W ′
i jηζW

′
jds+

[

WijηζW
′
j

]

s=L

[ML]l+i,l+j =

∫ L

0

(

WimWj +W ′
i jζW

′
j

)

ds−
[

WijζW
′
j

]

s=L

[ML]l+i,l+m+j = −
∫ L

0
WimeζΦjds

[ML]l+m+i,j =

∫ L

0
ΦimeηWjds

[ML]l+m+i,l+j = −
∫ L

0
ΦimeζWjds

[ML]l+m+i,l+m+j =

∫ L

0
ΦijξΦjds. (3.42)
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3.2.2.2 Linear Damping Matrix

In the equations of motion, there are no linear occurrences of the first time derivative of any of the
deformations. Therefore, the linear damping matrix is zero:

[CL] = 0. (3.43)

3.2.2.3 Linear Stiffness Matrix

The nonzero submatrices of the linear stiffness matrix are

[KL]i,j =

∫ L

0
W ′′
i DηW

′′
j ds

[KL]i,l+j = −
∫ L

0
W ′′
i DηζW

′′
j ds

[KL]l+i,j = −
∫ L

0
W ′′
i DηζW

′′
j ds

[KL]l+i,l+j =

∫ L

0
W ′′
i DζW

′′
j ds

[KL]l+m+i,l+m+j =

∫ L

0
Φ′
iDξΦ

′
jds. (3.44)

3.2.3 Nonlinear Matrices

In determining the nonlinear matrices, there are several possibilities concerning where to assign
terms from the equations of motion. This decision is done systematically such that terms containing
second-order time derivatives are assigned to the mass matrix, remaining terms that contain first-
order time derivatives are assigned to the damping matrix, and terms containing no time derivatives
are assigned to the stiffness matrix. Furthermore, for terms containing factors that have the same-
order time derivative, placement within the matrix is done such that the term with the lowest-
order spatial derivative is the unknown. Finally, for instances in which the temporal and spatial
derivatives of the factors are both of the same order, the spatial derivative of v is taken to be the
unknown.
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3.2.3.1 Nonlinear Mass Matrix

The nonlinear mass matrix is

[MNL]i,j =

∫ L

0

{

W ′
i (meηφ+meζ)

∫ s

0
w′W ′

jdŝ+W ′
i

[

−meηφw′ −meζw
′
]

Wj

+W ′
iw

′

∫ s

L

(−meηφ−meζ)W
′
jdŝ

+W ′
i

(

−2jηζφ− 2jηζv
′w′ − jηφ

2 + jηw
′2 + jζφ

2
)

W ′
j

−W ′
iw

′

∫ s

L

m

∫ ŝ

0
w′W ′

jds̃dŝ+Wi

[

−meηφw′ −meζw
′
]

W ′
j

}

ds

−
[

Wi (meηφ+meζ)

∫ s

0
w′W ′

jdŝ+Wi

[

−meηφw′ −meζw
′
]

Wj

+Wi

(

−2jηζφ− 2jηζv
′w′ + jηw

′2 − jηφ
2 + jζφ

2
)

W ′
j

]

s=L

[MNL]i,l+j =

∫ L

0

{

W ′
i (meηφ+meζ)

∫ s

0
v′W ′

jdŝ+W ′
i

[

−meηφv′ −meζv
′
]

Wj

+W ′
iw

′

∫ s

L

(−meη +meζφ)W ′
jdŝ

+W ′
i

(

2jηζφ
2 − 1

2
jηζv

′2 − 1

2
jηζw

′2 − jηφ+ jζφ+ jζv
′w′

)

W ′
j

−W ′
iw

′

∫ s

L

m

∫ ŝ

0
v′W ′

jds̃dŝ

}

ds

−
[

Wi (meηφ+meζ)

∫ s

0
v′W ′

jdŝ+Wi

[

−meηφv′ −meζv
′
]

Wj

+Wi

(

2jηζφ
2 − 1

2
jηζv

′2 − 1

2
jηζw

′2 − jηφ+ jζφ+ jζv
′w′

)

W ′
j

]

s=L

[MNL]i,l+m+j =

∫ L

0

{

W ′
iw

′

∫ s

L

(

−meηw′ +meζv
′
)

Φjdŝ

+Wi

[

−meη
(

1

2
φ2 +

1

2
w′2
)

−meζφ

]

Φj

}

ds
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[MNL]l+i,j =

∫ L

0

{

W ′
i (meη −meζφ)

∫ s

0
w′W ′

jdŝ

+W ′
iv

′

∫ s

L

(−meηφ−meζ)W
′
jdŝ

+Wi

[

−meηφv′ −meζv
′
]

W ′
j −W ′

iv
′

∫ s

L

m

∫ ŝ

0
w′W ′

jds̃dŝ

+W ′
i

(

2jηζφ
2 − 1

2
jηζv

′2 − 1

2
jηζw

′2 − jηφ+ jζφ+ jζv
′w′

)

W ′
j

}

ds

−
[

Wi (meη −meζφ)

∫ s

0
w′W ′

jdŝ+Wi

[

−meηφv′ −meζv
′
]

Wj

+Wi

(

2jηζφ
2 − 1

2
jηζv

′2 − 1

2
jηζw

′2 − jηφ+ jζφ+ jζv
′w′

)

W ′
j

]

s=L

[MNL]l+i,l+j =

∫ L

0

{

W ′
i (meη −meζφ)

∫ s

0
v′W ′

jdŝ

+W ′
i

[

−meη
(

v′ + φw′
)

+meζ
(

φv′ − w′
)]

Wj

+W ′
iv

′

∫ s

L

(−meη +meζφ)W ′
jdŝ

+Wi

[

−meη
(

v′ + φw′
)

+meζ
(

φv′ − w′
)]

W ′
j

+W ′
i

(

2jηζφ+ jξw
′2 + jηφ

2 − jζφ
2 + jζv

′2
)

W ′
j

−W ′
iv

′

∫ s

L

m

∫ ŝ

0
v′W ′

jds̃dŝ

}

ds−
[

Wi (meη −meζφ)

∫ s

0
v′W ′

jdŝ

+Wi

[

−meη
(

v′ + φw′
)

+meζ
(

φv′ − w′
)]

Wj

+Wi

(

2jηζφ+ jξw
′2 + jηφ

2 − jζφ
2 + jζv

′2
)

W ′
j

]

s=L

[MNL]l+i,l+m+j =

∫ L

0

{

W ′
iv

′

∫ s

L

(

−meηw′ +meζv
′
)

Φjdŝ+W ′
i jξw

′Φj

+Wi

[

−meη
(

φ+ v′w′
)

+meζ

(

1

2
φ2 +

1

2
v′

2
)]

Φj

}

ds

−
[

Wijξw
′Φj

]

s=L

[MNL]l+m+i,j =

∫ L

0
Φi

{

(

meηw
′ −meζv

′
)

∫ s

0
w′W ′

jdŝ

+

[

−meη
(

1

2
φ2 +

1

2
w′2
)

−meζφ

]

Wj

}

ds

[MNL]l+m+i,l+j =

∫ L

0
Φi

{

(

meηw
′ −meζv

′
)

∫ s

0
v′W ′

jdŝ+ jξw
′W ′

j

+

[

−meη
(

φ+ v′w′
)

+meζ

(

1

2
φ2 +

1

2
v′

2
)]

Wj

}

ds. (3.45)
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3.2.3.2 Nonlinear Damping Matrix

The nonlinear damping matrix is

[CNL]i,j =

∫ L

0

{

W ′
i (meηφ+meζ)

∫ s

0
ẇ′W ′

jdŝ+Wi

(

−meηφẇ′ −meζẇ
′
)

W ′
j

+W ′
i

(

−jηζv′ẇ′ + jηw
′ẇ′
)

W ′
j −W ′

iw
′

∫ s

L

m

∫ ŝ

0
ẇ′W ′

jds̃dŝ

}

ds

−
[

Wi (meηφ+meζ)

∫ s

0
ẇ′W ′

jdŝ+Wi

(

−jηζv′ẇ′ + jηw
′ẇ′
)

W ′
j

]

s=L

[CNL]i,l+j =

∫ L

0

{

W ′
i (meηφ+meζ)

∫ s

0
v̇′W ′

jdŝ

+W ′
i

(

−jηζv′v̇′ − 2jηζw
′ẇ′ − jξw

′v̇′ + jζ v̇
′w′
)

W ′
j

−W ′
iw

′

∫ s

L

m

∫ ŝ

0
v̇′W ′

jds̃dŝ

}

ds

−
[

Wi (meηφ+meζ)

∫ s

0
v̇′W ′

jdŝ

+Wi

(

−jηζv′v̇′ − 2jηζw
′ẇ′ − jξw

′v̇′ + jζ v̇
′w′
)

W ′
j

]

s=L

[CNL]i,l+m+j =

∫ L

0

{

W ′
iw

′

∫ s

L

(

−2meηẇ
′ + 2meζ v̇

′
)

Φjdŝ

+Wi

[

−meη
(

φφ̇+ 2w′ẇ′
)

−meζ φ̇
]

Φj +W ′
i

(

4jηζφv̇
′ − 2jηζẇ

′
)

Φj

+W ′
i

(

−jξ v̇′ − jηv̇
′ − 2jηφẇ

′ + jζ v̇
′ + 2jζφẇ

′
)

Φj

}

ds

−
[

Wi

(

4jηζφv̇
′ − 2jηζẇ

′ − jξ v̇
′ − jηv̇

′ − 2jηφẇ
′ + jζ v̇

′
)

Φj

]

s=L

− 2
[

Wijζφẇ
′Φj

]

s=L

[CNL]l+i,j =

∫ L

0

{

W ′
i (meη −meζφ)

∫ s

0
ẇ′W ′

jdŝ+W ′
i jζv

′ẇ′W ′
j

−W ′
iv

′

∫ s

L

m

∫ ŝ

0
ẇ′W ′

jds̃dŝ

}

ds

−
[

Wi (meη −meζφ)

∫ s

0
ẇ′W ′

jdŝ+Wijζv
′ẇ′W ′

j

]

s=L
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[CNL]l+i,l+j =

∫ L

0

{

W ′
i (meη −meζφ)

∫ s

0
v̇′W ′

jdŝ

+Wi

[

−meη
(

v̇′ + 2φẇ′
)

+meζ
(

φv̇′ − 2ẇ′
)]

W ′
j

+W ′
i

(

2jξw
′ẇ′ + jζv

′v̇′
)

W ′
j −W ′

iv
′

∫ s

L

m

∫ ŝ

0
v̇′W ′

jds̃dŝ

}

ds

−
[

Wi (meη −meζφ)

∫ s

0
v̇′W ′

jdŝ+Wi

(

2jξw
′ẇ′ + jζv

′v̇′
)

W ′
j

]

s=L

[CNL]l+i,l+m+j =

∫ L

0

{

W ′
iv

′

∫ s

L

(

−2meηẇ
′ + 2meζ v̇

′
)

Φjdŝ

+Wi

[

−meη
(

φ̇+ 2w′v̇′ + 2v′ẇ′
)

+meζ

(

φφ̇+ 2v′v̇′
)]

Φj

+W ′
i

(

2jηζ v̇
′ + 4jηζφẇ

′ + jξẇ
′ − jηẇ

′ + 2jηφv̇
′ + jζẇ

′
)

Φj

− 2W ′
i jζφv̇

′Φj

}

ds−
[

Wi

(

2jηζ v̇
′ + 4jηζφẇ

′ + jξẇ
′ − jηẇ

′
)

Φj

]

s=L

−
[

Wi

(

2jηφv̇
′ + jζẇ

′ − 2jζφv̇
′
)

Φj

]

s=L

[CNL]l+m+i,j =

∫ L

0

{

Φi

(

meηw
′ −meζv

′
)

∫ s

0
ẇ′W ′

jdŝ

+ Φi

(

jηζẇ
′ + jηφẇ

′ − jζφẇ
′
)

W ′
j

}

ds

[CNL]l+m+i,l+j =

∫ L

0

{

Φi

(

meηw
′ −meζv

′
)

∫ s

0
v̇′W ′

jdŝ+ Φi

(

−jηζ v̇′ − 4jηζφẇ
′
)

W ′
j

+ Φi

(

jξẇ
′ − jηφv̇

′ + jηẇ
′ + jζ v̇

′φ− jζẇ
′
)

W ′
j

}

ds. (3.46)

3.2.3.3 Nonlinear Stiffness Matrix

The nonlinear stiffness matrix is

[KNL]i,j =

∫ L

0

{

W ′
i

(

Dξv
′′2 +Dηw

′′2 −Dηζv
′′w′′

)

W ′
j

+W ′′
i

(

Dηw
′w′′ − 1

2
Dηζv

′′w′

)

W ′
j

}

ds

[KNL]i,l+j =

∫ L

0

{

W ′
i

(

Dζv
′′w′′ −Dηζw

′′2
)

W ′
j

+W ′′
i

(

Dζv
′′w′ − 1

2
Dηζv

′v′′ − 2Dηζw
′w′′

)

W ′
j

}

ds
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[KNL]i,l+m+j =

∫ L

0

{

W ′
iDξv

′′Φ′
j +W ′′

i

(

−Dηv
′′ −Dηφw

′′ +Dζv
′′ +Dζφw

′′
)

Φj

+W ′′
i

(

2Dηζφv
′′ − 2Dηζw

′′
)

Φj

}

ds

[KNL]l+i,j =

∫ L

0

{

W ′
i

(

Dζv
′′w′′ +Dηζw

′′2
)

W ′
j

+W ′′
i

(

Dξw
′v′′ − 1

2
Dηζw

′w′′

)

W ′
j

}

ds

[KNL]l+i,l+j =

∫ L

0

{

W ′
i

(

Dζv
′′2 −Dηζv

′′w′′
)

W ′
j

+W ′′
i

(

Dζv
′v′′ +Dζw

′w′′ − 1

2
Dηζv

′w′′

)

W ′
j

}

ds

[KNL]l+i,l+m+j =

∫ L

0

{

W ′′
i

(

Dηφv
′′ −Dηw

′′ −Dζφv
′′ +Dζw

′′ + 2Dηζv
′′
)

Φj

+ 2W ′′
i Dηζφw

′′Φj +W ′′
i Dξw

′Φ′
j

}

ds+
[

WiDξw
′Φ′′
j

]

s=L

[KNL]l+m+i,j =

∫ L

0

{

−ΦiDηζw
′′W ′′

j + Φ′
iDξv

′′W ′
j

}

ds

[KNL]l+m+i,l+j =

∫ L

0
Φi

(

−Dηw
′′ +Dζw

′′ +Dηζv
′′
)

W ′′
j ds

[KNL]l+m+i,l+m+j =

∫ L

0
Φi

(

Dηv
′′2 −Dηw

′′2 −Dζv
′′2 +Dζw

′′2 + 4Dηζv
′′w′′

)

Φjds. (3.47)

3.2.4 Forcing Vectors

3.2.4.1 Linear Forcing Vector

The linear forcing vector is

{FL}i =

∫ L

0
WiQwds

{FL}l+i =

∫ L

0
WiQvds

{FL}l+m+i =

∫ L

0
ΦiQφds. (3.48)
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3.2.4.2 Nonlinear Forcing Vector

The nonlinear forcing vector is

{FNL}i = −
∫ L

0
Wiw

′

∫ L

s

Qudŝds

{FNL}l+i = −
∫ L

0
Wiv

′

∫ L

s

Qudŝds. (3.49)

3.3 Numerical Implementation of the Structural Solver

3.3.1 Overview

The assumed-mode ordinary differential equation of motion (3.40) is evaluated numerically in FOR-
TRAN 90 using explicit integration. Essentially, this process consists of calculating the mass,
damping, and stiffness matrices and the force vectors at each time step.

3.3.2 Matrices

The time-invariant linear matrices are calculated only once using Simpson’s 1
3 rule. The forcing

vectors and nonlinear matrices are dependent upon time and, consequently, calculated for every
time step.

From a computational perspective, the triple integrals in the nonlinear mass and damping
matrices are particularly expensive. However, since the deformations are expressed in terms of
separable variables, the time-dependent contribution can be extracted, enabling the spatial integrals
to be computed once and accordingly multiplied by the corresponding time coefficients and summed
subsequently.

For example, in the triple integral

−
∫ L

0
W ′
i (s)w

′(s, t)

∫ s

L

m(ŝ)

∫ ŝ

0
v̇′(s̃, t)W ′

j(s̃)ds̃dŝds, (3.50)

the deformations are expanded in terms of mode shapes and time coefficients:

∫ L

0
W ′
i (s)

{

l
∑

a=1

wa(t)W
′
a(s)

}

∫ L

s

m(ŝ)

∫ ŝ

0

{

m
∑

b=1

v̇b(t)W
′
b(s̃)

}

W ′
j(s̃)ds̃dŝds. (3.51)

The time coefficients and summations are rearranged to yield

l
∑

a=1

m
∑

b=1

{

wa(t)v̇b(t)

∫ L

0
W ′
i (s)W

′
a(s)

∫ L

s

m(ŝ)

∫ ŝ

0
W ′
b(s̃)W

′
j(s̃)ds̃dŝds

}

. (3.52)

Furthermore,

∫ ŝ

0
W ′
b(s̃)W

′
j(s̃)ds̃ (3.53)

has a closed form solution, essentially reducing the calculation of the triple integral at every time
step to a once-computed double integral that undergoes double summation at subsequent time steps.
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The remaining integrals in the nonlinear matrices are calculated in a similar manner, reducing the
integrals to double summations.

3.3.3 Forcing Vectors

The forcing vectors are computed at every time step using Simpson’s 1
3 rule. For the case of p point

loads Fi(t), expressed in the inertial frame,

Q =







Qu
Qv
Qw







=

p
∑

i=1

δ(s− si)Fi, (3.54)

where δ(s) is the Dirac delta function (Haberman, 2004). This is done similarly for Qφ with the
moment about the ξ-axis, leading to

{FL}i =

∫ L

0
WiQwds =

p
∑

j=1

Wi(sj)Fzj
(t)

{FL}l+i =

∫ L

0
WiQvds =

p
∑

j=1

Wi(sj)Fyj
(t)

{FL}l+m+i =

∫ L

0
ΦiQφds =

q
∑

k=1

Φi(sk)Mξk(t) (3.55)

and

{FNL}i = −
∫ L

0
Wiw

′

∫ L

s

Quds = −
p
∑

j=1

Fxj
(t)

∫ sj

0
Wi(s)w

′(s, t)ds

{FNL}l+i = −
∫ L

0
Wiv

′

∫ L

s

Quds = −
p
∑

j=1

Fxj
(t)

∫ sj

0
Wi(s)v

′(s, t)ds, (3.56)

or

{FNL}i = −
p
∑

j=1

l
∑

a=1

Fxj
(t)wa(t)

∫ sj

0
Wi(s)W

′
a(s)ds

{FNL}l+i = −
p
∑

j=1

m
∑

a=1

Fxj
(t)va(t)

∫ sj

0
Wi(s)W

′
a(s)ds, (3.57)

where the integral has a closed-form solution.

3.3.4 Solution

Letting the time coefficients be represented by

X = {w1, . . . , wl, v1, . . . , vm, φ1, . . . , φn} , (3.58)
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equation (3.40) is rewritten such that

d

dt

{

X

Ẋ

}

=

{

Ẋ

[ML +MNL]−1 {
FL + FNL − [KL +KNL]X − [CNL] Ẋ

}

}

, (3.59)

or in shorthand as

Ẏ = F(Y, t). (3.60)

At each point in time, (3.59) is integrated using a fourth-order Runge-Kutta method (Gerald and
Wheatley, 2004):

Yn+1 = Yn +
1

6
∆t (k1 + 2k2 + 2k3 + k4) , (3.61)

where

tn+1 = tn + ∆t (3.62)

k1 = F (Yn, tn) (3.63)

k2 = F

(

Yn +
1

2
∆tk1, tn +

1

2
∆t

)

(3.64)

k3 = F

(

Yn +
1

2
∆tk2, tn +

1

2
∆t

)

(3.65)

k4 = F (Yn + ∆tk3, tn + ∆t) . (3.66)

This provides the time coefficients and the first derivatives of the time coefficients for each time
step. Consequently, the deformation of the elastic axis can be calculated with respect to time
by summing the product of the time coefficients and the mode shapes at the position of interest.
Knowing the deformed position of each point along the elastic axis as well as φ, the angle about ξ,
which the cross section coordinate system is rotated, enables the displacement of any point on the
structure to be calculated.

3.4 Structural Solver Validation

3.4.1 Method

The structural solver is validated by comparing results with those generated by Abaqus, a commer-
cial finite element software package. Validation consists of comparing frequencies and deflections
obtained with the beam model developed herein and the commercial finite element code Abaqus.

3.4.2 Natural Frequencies

Three beams are used as test cases for comparing natural frequencies obtained by using Abaqus
and the present beam model. Each of the beams is modeled in Abaqus using quadratic three-
dimensional continuum elements. Furthermore, for each case, a grid convergence test is done by
refining the mesh twice. The five frequencies corresponding to the first five vibrational modes are
compared with those obtained by the linear contribution to the beam model. For these comparisons,
the beam model uses five mode shapes for each of the three independent degrees of freedom.
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The linear contribution to the beam model provides a system of 15 coupled linear second-order
differential equations for which a sinusoidal analytical solution is obtainable for the mode shape
time coefficients. This solution provides the natural frequencies of the beam.

3.4.2.1 Case 1: A Tapered Beam

The first beam used for frequency comparison is a tapered, homogeneous beam composed of alu-
minum alloy 6061-T6. This beam choice provides an initial example of a non-uniform beam.
6061-T6 has a density of 2710 kg/m3, a Young’s modulus of 70 GPa, and a shear modulus of 26
GPa (Beer et al., 2006). The beam is shown in Figure 3.4. It is 20 cm long and consists of a 2 cm ×
1 cm cross section at the fixed end and a 1 cm × 1 cm cross section at the free end. The properties
of the tapered beam are listed in Table 3.1. For a rectangular cross section with dimensions a ×
b, where a is the greater of the two, the torsion constant can be approximated as follows (Roark
et al., 2002):

K = ab3
[

1

3
− 0.21

b

a

(

1 − b4

12a4

)]

(3.67)

X

Y

Z

Figure 3.4: Tapered beam with 100×5×6 mesh.

Table 3.2 shows the mesh sizes for the three finite element meshes. For each of the three
meshes, the first five frequencies are tabulated in Table 3.3. The error is measured by taking the
absolute value of the difference between the frequencies of the finest finite element mesh and the
assumed-mode solution and dividing by that of the finite element mesh.

The assumed-mode solution favorably agrees with the finite element solution, providing little
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Table 3.1: Properties of tapered beam.

Parameter Value

m(s) 0.542 − 1.355s kg/m
jξ(s) (0.22583 − 1.4679s+ 3.3875s2 − 2.8229s3) × 10−4 kg m2/m
jη(s) (0.18067 − 1.3550s+ 3.3875s2 − 2.8229s3) × 10−4 kg m2/m
jζ(s) (0.045167 − 0.11292s) × 10−4 kg m2/m
jηζ(s) 0 kg m2/m

Dξ(s) 173.33 + 9.1×10−10

(0.02−0.05s)5
− 1.092

(0.02−0.05s)

−433.33s− (2.275×10−9s)
(0.02−0.05s)5

+ (2.73s)
(0.02−0.05s) N m2

Dη(s) 466.67 − 3500s+ 8750s2 − 7291.7s3 N m2

Dζ(s) 116.67 − 291.67s N m2

Dηζ(s) 0 N m2

Table 3.2: Finite element mesh sizes of tapered beam.

Mesh Number Elements Along x, y, z Total Elements

1 50 × 3 × 3 450
2 67 × 3 × 5 1005
3 100 × 5 × 6 3000

Table 3.3: First five frequencies of tapered beam.

Mode Abaqus Modal Error
Mesh 1 [Hz] Mesh 2 [Hz] Mesh 3 [Hz] Representation [Hz]

1 252.75 252.71 252.64 251.89 0.297%
2 445.46 445.38 445.30 446.20 0.202%
3 1362.1 1361.8 1361.4 1370.8 0.686%
4 2081.4 2080.8 2080.4 2130.5 2.41%
5 3594.1 3593.4 3592.1 3671.3 2.16%
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error.

3.4.2.2 Case 2: A Twisted Beam

A twisted, homogeneous beam composed of aluminum alloy 6061-T6 is the second beam used for
frequency comparison. This beam is chosen as it provides an example of a non-uniform beam for
which the principal mass and bending axes vary with respect to the reference coordinate system.
The beam is shown in Figure 3.5. It is 10 m long and consists of a 1 m × 0.5 m cross section that is
unrotated at the fixed end and linear rotated such that it is at a 45 angle about the centroidal axis
at the free end. The properties of the twisted beam are presented in Table 3.4. For a rectangular
cross section with an aspect ratio of 2, the torsion constant K is 0.229ab3, where a and b are
respectively the lengths of the longer and shorter sides (Ugural and Fenster, 1981).

Y

Z X

Figure 3.5: Twisted beam with 100×5×10 mesh.

As with the tapered beam, Table 3.5 provides the mesh sizes for the three finite element meshes.
For each of the three meshes, the first five frequencies and the error are tabulated in Table 3.6.
The assumed-mode solution agrees nicely with the finite element solution.

3.4.2.3 Case 3: A Composite Beam

The final beam used for frequency analysis is a uniform composite beam consisting of aluminum
alloy 6061-T6 and steel. Steel has a density of 7860 kg/m3, a Young’s modulus of 200 GPa, and a
modulus of rigidity of 77.2 GPa (Beer et al., 2006). Three quarters of the beam are aluminum, while
the remaining quarter is steel. The beam is shown in Figure 3.6. This beam is selected because
it provides an example of a beam for which the mass and elastic centers of each cross section are
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Table 3.4: Properties of Twisted Beam

Parameter Value

m(s) 1355 kg/m
jξ(s) 141.15 kg m2/m
jη(s) 70.573 + 42.344 cos πs20 kg m2/m
jζ(s) 70.573 − 42.344 cos πs20 kg m2/m
jηζ(s) −42.344 sin πs

20 kg m2/m
Dξ(s) 7.4425 × 108 N m2

Dη(s) (1.8229 + 1.0938 cos πs20 ) × 109 N m2

Dζ(s) (1.8229 − 1.0938 cos πs20 ) × 109 N m2

Dηζ(s) −1.0938 cos πs20 × 109 N m2

Table 3.5: Finite element mesh sizes of twisted beam.

Mesh Number Elements Along x, y, z Total Elements

1 50 × 2 × 5 500
2 67 × 3 × 7 1407
3 100 × 5 × 10 5000

Table 3.6: First five frequencies of twisted beam.

Mode Abaqus Modal Error
Mesh 1 [Hz] Mesh 2 [Hz] Mesh 3 [Hz] Representation [Hz]

1 4.1440 4.1423 4.1410 4.1291 0.288%
2 8.0006 7.9981 7.9961 8.0229 0.335%
3 26.265 26.253 26.245 26.483 0.907%
4 46.756 46.737 46.723 48.425 3.64%
5 58.102 58.041 58.024 57.407 1.06%
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offset in both dimensions. Furthermore, the principal bending and mass axes are neither parallel
mutually nor to the reference coordinate system. The beam is 1 m long with a 5 cm × 3 cm cross
section. The properties of the composite beam are presented in Table 3.7. The torsional stiffness
is approximated by multiplying an area-weighted average of the modulus of rigidity by the result
of (3.67) for the cross section.

Y

Z X

Figure 3.6: Composite beam.

Table 3.8 tabulates the mesh sizes for the three finite element meshes, and Table 3.9 lists the
first five frequencies and the error. The frequencies calculated by the beam modal representation
provided accurate results while reducing the computational time by approximately two orders of
magnitude.
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Table 3.7: Properties of composite beam.

Parameter Value

eη(s) 3.7524 × 10−5 m
eζ(s) −6.2539 × 10−5 m
m(s) 5.9963 kg/m
jξ(s) 1.5668 × 10−3 kg m2/m
jη(s) 1.1521 × 10−3 kg m2/m
jζ(s) 0.41474 × 10−3 kg m2/m
jηζ(s) 0.12276 × 10−3 kg m2/m
Dξ(s) 1.0931 × 104 N m2

Dη(s) 2.9616 × 104 N m2

Dζ(s) 1.0662 × 104 N m2

Dηζ(s) 0.31212 × 104 N m2

Table 3.8: Finite element mesh sizes of composite beam.

Mesh Number Elements Along x, y, z Total Elements

1 77 × 2 × 4 616
2 100 × 4 × 6 2400
3 143 × 4 × 8 4576

Table 3.9: First five frequencies of composite beam.

Mode Abaqus Modal Error
Mesh 1 [Hz] Mesh 2 [Hz] Mesh 3 [Hz] Representation [Hz]

1 23.099 23.091 23.089 23.036 0.230%
2 39.675 39.668 39.665 39.662 0.00756%
3 144.18 144.13 144.12 144.30 0.125%
4 245.73 245.68 245.66 248.21 1.04%
5 401.19 401.01 400.98 403.61 0.656%
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3.5 Finite Element Method Code for Plates

Although the nonlinear beam element presented above excels on both accuracy and efficiency, not
all structures can be modeled by beams. For this reason, and because we prefer to have access to
the source code rather than using canned commercial codes, during this project we also developed
a finite element method for plates.

The Bogner-Fox-Schmit (BFS) rectangular conforming element was considered for rectangular
and triangular finite elements used herein (Bogner et al., 1966). The FEM employed three-node
triangular Mindlin (MIN3) plate element with an improved transverse shear term (Tessler and
Hughes, 1985). The nodal degree of freedom (DOF) of each BFS element was composed of 16
bending and 8 in-plane DOF. The MIN3 element has a total of 15 DOF, 5 at each apex node. The
bending node DOF comprises transverse displacements and normal rotations, and the in-plane node
DOF comprises in-plane displacements. The elements have been studied for similar cases, including
composite panels under the combined aerodynamic and acoustic pressures based on modal analysis.
Further, the MIN3 triangular element was used to study LCO of arbitrary laminated anisotropic
composite rectangular plates. The FEM used the BFS and Min3 elements. The Generic Transport
Wing (GTW), as described by Edwards et al. (2009), was examined in detail.

The Generic Transport Wing (GTW) provided us a platform for computational fluid dynam-
ics/computational structural mechanics experimental validation. The GTW was used in legacy
experiments within the NASA LaRC TDT Facility. Features of the GTW include: a structure
of solid aluminum with balsa skin, LCO responses exhibited within the transonic regime, LCOs
exhibited with a winglet present and noticeable differences in vibration characteristics from the
baseline, and repeatable measurements of LCO. The GTW geometry is shown in the Fig. 3.7.

Indeed, the LCO was present on the GTW with winglet (as well as the other configurations),
and the winglet made noticeable differences in the vibration characteristics. The plate-based FEM
model we developed was used to replicate the results published by Edwards et al. (2009). The
vibration characteristics are given in Table 3.10, and the first three modes are illustrated in Fig. 3.8.

Table 3.10: First four frequencies of generic transport wing.

Mode Measured FEM Error
[Hz] [Hz] [%]

1st bending 4.08 4.07 0.245
2nd bending 14.0 14.5 3.571
1st torsion 31.5 29.3 6.984
2nd torsion 58.1 57.4 1.205
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Figure 3.7: Generic transport wing.
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Figure 3.8: Generic transport wing: first three modes.
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Chapter 4

Continuation Methods

Since the design space of new air vehicles is vast, determination of nonlinear responses, vehicle trim
states and vehicle stability must be addressed in an efficient, methodical manner. Numerical Con-
tinuation will reveal various bifurcation characteristics including both subcritical and supercritical
bifurcations. The former case is of significant interest because the subcritical bifurcations indicate
limit cycle oscillations below the linear stability boundary. Further, subcritical bifurcations depend
upon disturbances, and have a hysteresis between onset and recovery speeds. This behavior cannot
be studied with linear methods. Subcritical bifurcations are anticipated for highly deformable, high
aspect ratio wings and may reveal adverse vehicle performance.

Numerical continuation methods offer a robust and efficient solution to these needs. In our
opinion, one limitation is the ability to properly represent the aerodynamic loads as appropriate
for the regime. However, with the inclusion of the variable-fidelity reduced-order model, the Con-
tinuation Method permits direct analysis of the system without requiring explicit linearization or
compromise on a physical description of the flow. Thus, the trim states of the nonlinear system and
the stability characteristics of the air vehicle can be evaluated in a continuous manner as system
parameters are varied. Continuation Methods are direct methods for examining the bifurcation
characteristics of the nonlinear equations.

We use the software tool AUTO for continuation and bifurcation analyzes of the nonlinear
ordinary differential equations (Doedel, 1981). AUTO automates the computation of solutions of
this parameter-dependent system of equations. The system possesses multiple solutions, and it
is valuable to compute the set of solutions and search for those solutions with specific desirable
properties as a system parameter is varied. This solution set forms a bifurcation diagram, i.e.,
a smooth curve (or surface) representing the solution for the varying system parameter. Tools
such as AUTO facilitate parametric studies and minimize time consuming numerical simulations.
The computation of such bifurcation diagrams and associated singularities is captured within the
domain of the numerical continuation algorithm. AUTO has the capability to compute periodic
solutions such as the limit cycle oscillations (LCOs). In addition, AUTO determines the stability
of the steady state solutions. AUTO permits a two-parameter continuation solution of Hopf and
other bifurcation points. A detailed description on the features of AUTO can be found in (Doedel
et al., 2002).

The method permits direct eigen-analysis of the system without resorting to explicit lineariza-
tion. Thus, the nonlinear trim states and their stability characteristic can be evaluated in a contin-
uous manner as a single system parameter is varied using the exact nonlinear expressions. Eigen-
values obtained by the method are used to ascertain the extent of coupling between rigid body
and flexible body modes. Various bifurcation points of the system are found and permit evaluation
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of stability boundaries. Also, the method is used to examine the presence of LCOs. In such a
situation, the dynamic characteristic of the system is dependent on initial condition.

We have applied the continuation method to the nonlinear aeroelastic responses for vehicles
with moderate-to-high deformations. The wing was modeled using nonlinear structural equations
of motion for a cantilevered beam with in-plane, out-of-plane, and torsional couplings. In the form
of a bifurcation diagram, Fig. 4.1 is an example of a bifurcation diagram created as part of the
continuation tool. The tool permits nonlinear analysis of the set of governing equations. The
approach detects the bifurcation points, determines equilibria and stability states, determines am-
plitude of periodic solutions (e.g., stable LCOs), and rapidly identifies character of design. We have
shown that it duplicates time-domain simulation, but such exhaustive simulation to “bracket” the
stability boundaries is avoided.

Figure 4.1: Example bifurcation diagram showing the effect of trim constraint.

Figure 4.1 shows amplitudes of the out-of-plane modal coordinate, equilibria, and limit cycles
as the freestream velocity is varied. Bifurcation occurs at the critical velocity. From the bifurcation
point, the thin solid line represents a branch of stable equilibria, the thin dashed line represents
a branch of unstable equilibria, and the thick solid line represents a branch of stable LCOs. An
important observation is that the trim model shows a change in amplitude in both equilibria and
LCOs. In addition, the continuation tool allows one to explore the parameter space without missing
details.

Figure 4.2 shows results for the wing with a trim constraint such that the wing possesses a root
angle. Under flight conditions requiring a root angle of attack to satisfy the trim constraint, the
static deformation and stability characteristics change. The trim condition leads to a statically
deformed shape of the wing that must vary with the freestream velocity and, as one might expect,
static deformation of the wing increases with increasing freestream velocity. The system loses
stability at a velocity of approximately 124 ft/sec.

The left view of Fig. 4.2 shows a bifurcation diagram with the supercritical branch which
describes the response at velocities higher than the bifurcation point. The nature of bifurcation
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Figure 4.2: Sensitivity to aspect ratio: transition to subcritical from supercritical behavior at angle
of attach 2.8 deg and in-plane to out-of-plane stiffness ratio, βn=4.

depends on the angle of attack imposed by the trim condition as well as system design properties
such as the in-plane to out-of-plane stiffness ratios (βn). In addition, the right view indicates
the vehicle transitions to a subcritical branch at a higher aspect ratios. In linear analysis, the
bifurcation point is the flutter velocity, and is the only response predicted by such analysis. The
supercritical branch, as well as the stable branch (solid line) in the right view, describes limit cycle
behavior. The nonlinear dynamics of this system are governed by the existence of a disturbance.
With a disturbance, the system becomes entrained in the LCO with amplitude as shown by the
thick solid line.

In summary, the Continuation Method provides an efficient method of nonlinear analysis for
the aeroelastic system. The method eliminates “bracketing” approaches inherent of time domain
simulation of nonlinear equations. Continuation detects bifurcations, defines equilibria and stability,
determines amplitude of LCOs, characteristics, and identifies design characteristics in a rapid,
comprehensive manner.
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Chapter 5

A Novel Flow Solver Grid Generator
for Aircraft with Extreme Wing
Deformation

Grid generation is an important part of computational fluid dynamics, which greatly affects the
accuracy of the numerical results. Grid quality has an even stronger effect on solution accuracy when
simulating unsteady flows, and especially when the mesh deforms, like in aeroelasticity simulations.
This chapter presents a new grid generation algorithm for aircraft with extreme wing deformation.
The next section briefly presents background information on the grid generator that was enhanced
during this project. The following section presents the conformal mappings proposed to enhance
the existing grid generator. The last section compares the grid qualities of the two grid generators.

5.1 Background information

The new grid generation algorithm proposed herein was implemented into an existing mesh gen-
eration code (Cizmas and Gargoloff, 2008). This existing grid generation code discretized the
computational domain of the flow solver using a hybrid grid consisting of hexahedra and triangular
prisms. Because of the wing-fuselage configuration, it was possible to divide the computational
domain into layers that were topologically identical, as shown in Fig. 5.1. Therefore, a 2.5-D grid
could be used to discretize the 3-D domain, which simplified the grid generation algorithm.

The topologically identical nodes of adjacent layers were interconnected to generate the volume
elements that were either triangular prisms or hexahedra. To better control mesh size near the wing,
each layer had a structured O-grid around the wing, and an unstructured grid at the exterior of
the O-grid. The O-grid allowed clustering cells in the direction normal to the structure to properly
capture boundary layer effects. The unstructured grid was flexible in filling the rest of the domain.

The O-grid algorithm previously used (Cizmas and Gargoloff, 2008) was based on a Poisson
solver which did not enforce grid orthogonality. As a result, the quality of the O-grid deteriorated
near the leading and trailing edges of the wing. To alleviate this problem, a conformal mapping
algorithm was developed herein, which assured grid orthogonality over the entire O-grid. Grid
orthogonality is also beneficial for the cases when wing chord-wise bending is significant. In these
cases, a good quality grid based on the Poisson solver is difficult to obtain for all chord-wise bending
configurations.
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Figure 5.1: Grid generator: (a) detail of topologically identical layers along the wing, and (b)
aircraft configuration.

5.2 Conformal Mapping

The conformal mapping used herein to generate the O-grid is an extension of the Carafoli method
for determining the velocity and pressure distribution on airfoil cascades, assuming the flow is
inviscid, incompressible and potential (Berbente and Cizmas, 1990). This conformal mapping is
used for two purposes: (1) to generate the grid around the wing, and (2) to provide a start-up value
for the velocity and pressure field in the O-grid.

The conformal mapping proposed herein consisted of three transformations that mapped the
exterior of a unit circle onto either an isolated airfoil or an airfoil in a cascade. It is known that
when the distance between airfoils is larger than approximately three chords, the effect of the
neighboring airfoil is negligible. As a result, the user has the option to generate a grid for either an
isolated airfoil or a cascade airfoil by selecting the distance between airfoils. Therefore, this grid
generation algorithm can also be used for turbomachinery flows.

The first conformal mapping of the sequence is the Weinig-Manea transformation (Berbente
and Cizmas, 1990)

z =
t

2π

(

eiλ ln
ζ +R

ζ −R
+ e−iλ ln

Rζ + 1

Rζ − 1
+B

)

, (5.1)

where t was the cascade pitch, λ was the stagger angle, ζ was the complex variable of the mapped
circle domain, z was the complex variable of the airfoil domain, and R and B were constants that
were determined as a function of the solidity and stagger angle. Function (5.1) maps the exterior
of the unit circle into a cascade of flat plates. Using (5.1) with the translation and homothety of
the unit circle generates cascade airfoils with various thicknesses and curvatures.

To generate the grid and find the velocity field for a given airfoil, a conformal mapping similar
to (5.1) would be needed, which maps the unit circle onto the wing airfoil. To achieve this goal,
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a series of conformal mappings are determined by going backward, that is, from the airfoil to the
unit circle.

z
p
(˙)

g(˙)

z
1
(˙)

z
2
(z

1
)z(z

2
)

R, z E, z
2

C, z
1

K, ˙

E C K

(R,0)(-R,0) (-1/R) (1/R)

i
∞

ÏV
∞

Figure 5.2: Conformal mapping components.

The sequence of mappings, shown in Fig. 5.2, consists of: (1) conformal mapping z(z2) given
by (5.1) where ζ was substituted by z2, (2) conformal mapping

z2 =

(

z1 −
c2

z1

)

eiτ + z0 (5.2)

which represents the mapping of a circle to an ellipse, where τ is the angle of the axes of the ellipse,
c2 = (b2 − a2)/4 with a and b being the axes of the ellipse, and (3) conformal mapping

z1 =
m−2
∑

j=−1

C−jζ
j , C−j ∈ C, (5.3)

where the constants C−j were determined given a contour C in plane C .
The implementation of the numerical algorithm that calculates the conformal mapping is briefly

described herein. For a given airfoil shape, the Newton-Raphson method was used to determine
the shape of the contour E in plane E . The closest ellipse to contour E was then obtained by
determining z0, a, b and τ using the least squares method. The coordinates of contour C in plane
C were determined using a Newton-Raphson method applied to the conformal mapping (5.2). The
complex coefficients C−j were determined by rewriting (5.3) in polar coordinates

z1 =
m−2
∑

j=−1

(A−j + iB−j)r
−j(cos jϕ− i sin jϕ),

dividing the unit circle K in 2 m equal segments (m = 2k, k ∈ N) and using the orthogonality of
trigonometric functions with discrete arguments.

Once the conformal mappings z2(z1) and z1(ζ) are known, the conformal mapping from the
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unit circle to the airfoil was calculated as

zp = z ◦ z2 ◦ z1

Figure 5.3 shows a detail of the structured and unstructured grids as seen along the y-axis. The
structured O-grid was generated using the conformal mapping approach presented above.

Figure 5.3: Conformal mapping O-grid surrounded by unstructured grid.

5.3 Grid Quality

The quality of the unstructured mesh was investigated in (Cizmas and Gargoloff, 2008). To evaluate
the quality of the structured mesh, an indicator based on angles is proposed herein. This indicator
assessed the quality of the layers perpendicular to the wing span direction. Therefore, the three-
dimensional grid quality was reduced to a two-dimensional grid quality problem.

Based on angles, the cell with the highest quality is a rectangle. Consequently, the quality
indicator was defined as q = 0.25

∑

i=1,4 sinαi, where αi is the angle at corner i. As a result, the
mesh quality improved as the indicator got closer to 1, the maximum value of q.

Figure 5.4 shows the contour plots of the mesh quality indicator of an O-grid generated using the
Poisson solver and the conformal mapping. The grid generated using the Poisson solver had 6250
nodes while the grid generated using the conformal mapping had 6400 nodes. The average angle
for the Poisson solver was 63 deg, while for the conformal mapping was 81 deg . Note that although
the conformal mapping generates an orthogonal grid, the edges of the cells are approximated by
straight lines and therefore the average angle was not 90 deg. Figure 5.4 shows that the grid quality
of the conformal mapping grid is superior to that of the Poisson solver.

To test the conformal mapping algorithm for extreme cases of cross-wise bending, the wing
deformation was amplified as shown in Fig. 5.5. As expected, the quality of the grid generated
using conformal mapping was good, in spite of the large cross-wise deformation.

The grid generation algorithm was designed such that the grid connectivity remained unchanged,
while the mesh deformed as the wing bent and twisted under aerodynamic loads. The algorithm
for grid deformation was applied in two steps: (1) grid translation, and (2) grid rotation about
the three axes (Cizmas and Gargoloff, 2008). The O-grid layers deformed as the wing cross-
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(a) (b)

Figure 5.4: Grid quality based on angle: (a) Poisson solver, and (b) conformal mapping.

section deformed. The unstructured grid was deformed in the xz-plane using a spring analogy
technique (Batina, 1990). The nodes of each layer were also translated in the y-direction according
to the wing deformation.

The grid was rotated and stretched about the x-, y-, and z-axes. The numerical values of
the rotation angles θx, θy, and θz were calculated using data provided by the structural solver
(Cizmas and Gargoloff, 2008). Figure 5.6 shows the undeformed and deformed grids for the Goland
wing (Eastep and Olsen, 1980; Snyder et al., 2003). In this case, the deformation at the tip was
approximately 60% of the wing semi-span length, illustrating that the grid deformation algorithm
is robust and precludes the need for regriding, even at large deformations.

This grid generation and deformation algorithm allowed the reduction of the computational
cost of grid generation by a factor of 3.6 or more (Cizmas and Gargoloff, 2008), while maintaining
the grid topology unchanged. Having an unchanged topology, while the grid deformed, simplified
both the parallel and multigrid algorithms.
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Figure 5.5: Hybrid grid around the wing with O-
grid generated using conformal mapping, assuming
exaggerated chord-wise deformation.

Figure 5.6: Isometric projection of deformed
and undeformed grids of the Goland wing - tip
deformation of 60% of wing semi-span (Ciz-
mas and Gargoloff, 2008).
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Appendix A

Nonlinear Beam - Hamilton’s
Principle

The extended form of Hamilton’s principle is

δI = δ

∫ t2

t1

(T + W) dt = 0. (A.1)

Noting that

L = T − V (A.2)

W = Wc + Wnc (A.3)

δV = − δWc, (A.4)

Hamilton’s principle can be rewritten as Meirovitch (1967)

δI = δ

∫ t2

t1

(L +Wnc) dt = 0, (A.5)

where

δWnc = δWB +

∫ L

0
(Quδu+Qvδv +Qwδw +Qφδφ) ds. (A.6)

This leads to

δI =

∫ t2

t1

{

δL + δWB +

∫ L

0
(Quδu+Qvδv +Qwδw +Qφδφ) ds

}

dt = 0, (A.7)

which, upon accounting for the inextensionality constraint, becomes

δI =

∫ t2

t1

{
∫ L

0

(

δl + δ

[

1

2
λ
(

1 −
(

1 + u′
)2

+ v′
2
+ w′2

)

])

ds

+ δWB +

∫ L

0
(Quδu+Qvδv +Qwδw +Qφδφ) ds

}

dt = 0. (A.8)
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The variations of the cross-sectional Lagrangian, θ, and ψ are

δl =
∂l

∂u̇
δu̇+

∂l

∂v̇
δv̇ +

∂l

∂ẇ
δẇ +

∂l

∂ψ
δψ +

∂l

∂ψ̇
δψ̇ +

∂l

∂ψ′
δψ′

+
∂l

∂θ
δθ +

∂l

∂θ̇
δθ̇ +

∂l

∂θ′
δθ′ +

∂l

∂φ
δφ+

∂l

∂φ̇
δφ̇+

∂l

∂φ′
δφ′ (A.9)

δθ =
∂θ

∂u′
δu′ +

∂θ

∂v′
δv′ +

∂θ

∂w′
δw′ (A.10)

δψ =
∂ψ

∂u′
δu′ +

∂ψ

∂v′
δv′. (A.11)

The variation of the cross-sectional Lagrangian is then written as

δl =
∂l

∂u̇
δu̇+

∂l

∂v̇
δv̇ +

∂l

∂ẇ
δẇ +

∂l

∂ψ

(

∂ψ

∂u′
δu′ +

∂ψ

∂v′
δv′
)

+
∂l

∂ψ̇

(

∂2ψ

∂t∂u′
δu′ +

∂ψ

∂u′
δu̇′ +

∂2ψ

∂t∂v′
δv′ +

∂ψ

∂v′
δv̇′
)

+
∂l

∂ψ′

(

∂2ψ

∂s∂u′
δu′ +

∂ψ

∂u′
δu′′ +

∂2ψ

∂s∂v′
δv′ +

∂ψ

∂v′
δv′′
)

+
∂l

∂θ

(

∂θ

∂u′
δu′ +

∂θ

∂v′
δv′ +

∂θ

∂w′
δw′

)

δθ

+
∂l

∂θ̇

(

∂2θ

∂t∂u′
δu′ +

∂θ

∂u′
δu̇′ +

∂2θ

∂t∂v′
δv′ +

∂θ

∂v′
δv̇′ +

∂2θ

∂t∂w′
δw′ +

∂θ

∂w′
δẇ′

)

+
∂l

∂θ′

(

∂2θ

∂s∂u′
δu′ +

∂θ

∂u′
δu′′ +

∂2θ

∂s∂v′
δv′ +

∂θ

∂v′
δv′′ +

∂2θ

∂s∂w′
δw′ +

∂θ

∂w′
δw′′

)

+
∂l

∂φ
δφ+

∂l

∂φ̇
δφ̇+

∂l

∂φ′
δφ′ (A.12)

Expanding (A.8) and performing integration by parts to express the integrand in terms of the
variations δu, δv, δw, and δφ yields
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δI =

∫ t2

t1

∫ L

0

{[

− ∂2l

∂s∂ψ

∂ψ

∂u′
− ∂l

∂ψ

∂2ψ

∂s∂u′
+

∂3l

∂t∂s∂ψ̇

∂ψ

∂u′
+

∂2l

∂t∂ψ̇

∂2ψ

∂s∂u′

]

δu

+

[

∂3l

∂s2∂ψ′

∂ψ

∂u′
+

∂2l

∂s∂ψ′

∂2ψ

∂s∂u′
− ∂2l

∂s∂θ

∂θ

∂u′
− ∂l

∂θ

∂2θ

∂s∂u′

]

δu

+

[

∂3l

∂t∂s∂θ̇

∂θ

∂u′
+

∂2l

∂t∂θ̇

∂2θ

∂s∂u′
+

∂3l

∂s2∂θ′
∂θ

∂u′
+

∂2l

∂s∂θ′
∂2θ

∂s∂u′

]

δu

+

[

− ∂2l

∂s∂ψ

∂ψ

∂v′
− ∂l

∂ψ

∂2ψ

∂s∂v′
+

∂3l

∂t∂s∂ψ̇

∂ψ

∂v′
+

∂2l

∂t∂ψ̇

∂2ψ

∂s∂v′

]

δv

+

[

∂3l

∂s2∂ψ′

∂ψ

∂v′
+

∂2l

∂s∂ψ′

∂2ψ

∂s∂v′
− ∂2l

∂s∂θ

∂θ

∂v′
− ∂l

∂θ

∂2θ

∂s∂v′

]

δv

+

[

∂3l

∂t∂s∂θ̇

∂θ

∂v′
+

∂2l

∂t∂θ̇

∂2θ

∂s∂v′
+

∂3l

∂s2∂θ′
∂θ

∂v′
+

∂2l

∂s∂θ′
∂2θ

∂s∂v′

]

δv

+

[

− ∂2l

∂s∂θ

∂θ

∂w′
− ∂l

∂θ

∂2θ

∂s∂w′
+

∂3l

∂t∂s∂θ̇

∂θ

∂w′

]

δw

+

[

∂2l

∂t∂θ̇

∂2θ

∂s∂w′
+

∂3l

∂s2∂θ′
∂θ

∂w′
+

∂2l

∂s∂θ′
∂2θ

∂s∂w′

]

δw

+

[

∂l

∂φ
− ∂2l

∂t∂φ̇
− ∂2l

∂s∂φ′

]

δφ− ∂2l

∂t∂u̇
δu− ∂2l

∂t∂v̇
δv − ∂2l

∂t∂ẇ
δw

+
[

λ′
(

1 + u′
)

+ λu′′
]

δu+
[

λ′v′ + λv′′
]

δv +
[

λ′w′ + λw′′
]

δw

+Quδu+Qvδv +Qwδw +Qφδφ

}

ds+

[

∂l

∂φ′
δφ

−
([

∂2l

∂t∂ψ̇
+

∂2l

∂s∂ψ′
− ∂l

∂ψ

]

∂ψ

∂u′
+

[

∂2l

∂t∂θ̇
+

∂2l

∂s∂θ′
− ∂l

∂θ

]

∂θ

∂u′
+ λ

[

1 + u′
]

)

δu

−
([

∂2l

∂t∂ψ̇
+

∂2l

∂s∂ψ′
− ∂l

∂ψ

]

∂ψ

∂v′
+

[

∂2l

∂t∂θ̇
+

∂2l

∂s∂θ′
− ∂l

∂θ

]

∂θ

∂v′
+ λv′

)

δv

−
([

∂2l

∂t∂θ̇
+

∂2l

∂s∂θ′
− ∂l

∂θ

]

∂θ

∂w′
+ λw′

)

δw + δWB

+

(

∂l

∂ψ′

∂ψ

∂v′
+

∂l

∂θ′
∂θ

∂v′
−
[

∂l

∂ψ′

∂ψ

∂u′
+

∂l

∂θ′
∂θ

∂u′

]

v′

1 + u′

)

δv′

+

(

∂l

∂ψ′

∂ψ

∂w′
+

∂l

∂θ′
∂θ

∂w′
−
[

∂l

∂ψ′

∂ψ

∂u′
+

∂l

∂θ′
∂θ

∂u′

]

w′

1 + u′

)

δw′

]s=L

s=0

dt = 0. (A.13)

Letting

Aα =
∂2l

∂t∂α̇
+

∂2l

∂s∂α′
− ∂l

∂α
(α = ψ, θ, φ) (A.14)

Hα =
∂l

∂ψ′

∂ψ

∂α′
+

∂l

∂θ′
∂θ

∂α′
(α = u, v, w), (A.15)

71



(A.13) can be written as

δI =

∫ t2

t1

∫ L

0

{[

Aψ
∂ψ

∂u′
+Aθ

∂θ

∂u′
+ λ

(

1 + u′
)

]′

δu+

[

Aψ
∂ψ

∂v′
+Aθ

∂θ

∂v′
+ λv′

]′

δv

+

[

Aθ
∂θ

∂w′
+ λw′

]′

δw −Aφδφ− ∂2l

∂t∂u̇
δu− ∂2l

∂t∂v̇
δv − ∂2l

∂t∂ẇ
δw

+Quδu+Qvδv +Qwδw +Qφδφ

}

ds

+

[

∂l

∂φ′
δφ−

(

Aψ
∂ψ

∂u′
+Aθ

∂θ

∂u′
+ λ

[

1 + u′
]

)

δu−
(

Aψ
∂ψ

∂v′
+Aθ

∂θ

∂v′
+ λv′

)

δv

−
(

Aθ
∂θ

∂w′
+ λw′

)

δw + δWB +

(

Hv −Hu
v′

1 + u′

)

δv′

+

(

Hw −Hu
w′

1 + u′

)

δw′

]s=L

s=0

dt = 0, (A.16)

requiring that

[

Aψ
∂ψ

∂u′
+Aθ

∂θ

∂u′
+ λ

(

1 + u′
)

]′

=
∂2l

∂t∂u̇
−Qu (A.17)

[

Aψ
∂ψ

∂v′
+Aθ

∂θ

∂v′
+ λv′

]′

=
∂2l

∂t∂v̇
−Qv (A.18)

[

Aθ
∂θ

∂w′
+ λw′

]′

=
∂2l

∂t∂ẇ
−Qw (A.19)

Aφ = Qφ. (A.20)

(A.17)-(A.20) are the equations of motion.
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